Predictions of phase temperatures in a porous cathode of polymer electrolyte fuel cells using a two-equation model

被引:13
作者
Chao, C. H.
Hwang, Azai J. J.
机构
[1] Department of Electrical Engineering, Ta-Hua Institute of Technology
[2] Institute of Material and System Engineering, MingDao University
关键词
porous cathode; polymer electrolyte fuel cell; catalyst layer; diffusion layer; local thermal non-equilibrium (LTNE); 3-DIMENSIONAL COMPUTATIONAL ANALYSIS; TRANSPORT PHENOMENA; HEAT-TRANSFER; GAS; WATER;
D O I
10.1016/j.jpowsour.2006.03.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, both solid-phase and fluid-phase temperatures inside a porous cathode of a polymer electrolyte fuel cell in contact with an interdigitated gas distributor are predicted numerically. The porous cathode consists of a catalyst layer and a diffusion layer. The heat transfer in the catalyst layer is coupled with species transports via a macroscopic electrochemical model. On the other hand, in the diffusion layer, the energy equations based on the local thermal non-equilibrium (LTNE) are derived to resolve the temperature difference between the solid phase and the fluid phase. As for the species transports, the Bruggemann model is employed to describe the effective diffusivities of the oxygen and water vapor in the porous cathode. Results show that the wall temperature decreases with increasing the intrinsic heat transfer coefficient. As the intrinsic heat transfer coefficients increase, the porous electrode becomes local thermal equilibrium with a strong thermal interaction (heat transfer) between the solid and fluid phases. Under the conditions of high intrinsic heat transfer coefficients, the temperature difference between the solid matrices and the reactant fluids are negligible. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1122 / 1130
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 1995, PRINCIPLES HEAT TRAN
[2]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[3]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J].
Berning, T ;
Lu, DM ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :284-294
[4]   Influence of heat transfer on gas and water transport in fuel cells [J].
Djilali, N ;
Lu, DM .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2002, 41 (01) :29-40
[5]   Two-dimensional model for proton exchange membrane fuel cells [J].
Gurau, V ;
Liu, HT ;
Kakac, S .
AICHE JOURNAL, 1998, 44 (11) :2410-2422
[6]   A three-dimensional numerical simulation of the transport phenomena in the cathodic side of a PEMFC [J].
Hwang, JJ ;
Chen, CK ;
Savinell, RF ;
Liu, CC ;
Wainright, J .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2004, 34 (02) :217-224
[7]   Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams [J].
Hwang, JJ ;
Hwang, GJ ;
Yeh, RH ;
Chao, CH .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (01) :120-129
[8]   Thermal-electrochemical modeling of a proton exchange membrane fuel cell [J].
Hwang, JJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (02) :A216-A224
[9]   Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC [J].
Hwang, JJ ;
Chen, CK ;
Lai, DY .
JOURNAL OF POWER SOURCES, 2005, 140 (02) :235-242
[10]  
HWANG JJ, IN PRESS INT J HEAT