Design of maximum permeability material structures

被引:172
作者
Guest, James K.
Prevost, Jean H.
机构
[1] Johns Hopkins Univ, Dept Civil Engn, Baltimore, MD 21218 USA
[2] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
关键词
topology optimization; inverse homogenization; porous materials;
D O I
10.1016/j.cma.2006.08.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper extends recent advances in the topology optimization of fluid flows to the design of periodic, porous material microstructures. Operating in a characteristic base cell of the material, the goal is to determine the layout of solid and fluid phases that will yield maximum permeability and prescribed flow symmetries in the bulk material. Darcy's law governs flow through the macroscopic material while Stokes equations govern flow through the microscopic channels. Permeability is computed via numerical homogenization of the base cell using finite elements. Solutions to the proposed inverse homogenization design problem feature simply connected pore spaces that closely resemble minimal surfaces, such as the triply periodic Schwartz P minimal surface for 3 - d isotropic, maximum permeability materials. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1006 / 1017
页数:12
相关论文
共 31 条
[1]  
Allaire G., 1993, TOPOLOGY DESIGN STRU
[2]  
[Anonymous], 1980, LECT NOTES PHYS
[3]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[4]  
Bendsoe M.P., 2004, TOPOLOGY OPTIMIZATIO, P1, DOI [10.1007/978-3-662-05086-6_1, DOI 10.1007/978-3-662-05086-6_2]
[5]  
Bendsoe M.P, 1989, Struct. Optim, V1, P193, DOI [10.1007/BF01650949, DOI 10.1007/BF01650949]
[6]   GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD [J].
BENDSOE, MP ;
KIKUCHI, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) :197-224
[7]   Interior-point methods for nonconvex nonlinear programming: Filter methods and merit functions [J].
Benson, HY ;
Vanderbei, RJ ;
Shanno, DF .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :257-272
[8]   Topology optimization of fluids in Stokes flow [J].
Borrvall, T ;
Petersson, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 41 (01) :77-107
[9]  
Brakke KA., 1992, EXP MATH, V1, P141, DOI [DOI 10.1080/10586458.1992.10504253, 10.1080/10586458.1992.10504253]
[10]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129