Determination of cellular strains by combined atomic force microscopy and finite element modeling

被引:105
作者
Charras, GT [1 ]
Horton, MA [1 ]
机构
[1] UCL, Dept Med, Rayne Inst, Bone & Mineral Ctr, London WC1E 6JJ, England
基金
英国惠康基金;
关键词
D O I
10.1016/S0006-3495(02)75214-4
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Many organs adapt to their mechanical environment as a result of physiological change or disease. Cells are both the detectors and effectors of this process. Though many studies have been performed in vitro to investigate the mechanisms of detection and adaptation to mechanical strains, the cellular strains remain unknown and results from different stimulation techniques cannot be compared. By combining experimental determination of cell profiles and elasticities by atomic force microscopy with finite element modeling and computational fluid dynamics, we report the cellular strain distributions exerted by common whole-cell straining techniques and from micromanipulation techniques, hence enabling their comparison. Using data from our own analyses and experiments performed by others, we examine the threshold of activation for different signal transduction processes and the strain components that they may detect. We show that modulating cell elasticity, by increasing the F-actin content of the cytoskeleton, or cellular Poisson ratio are good strategies to resist fluid shear or hydrostatic pressure. We report that stray fluid flow in some substrate-stretch systems elicits significant cellular strains. In conclusion, this technique shows promise in furthering our understanding of the interplay among mechanical forces, strain detection, gene expression, and cellular adaptation in physiology and disease.
引用
收藏
页码:858 / 879
页数:22
相关论文
共 80 条
[1]   Relative microelastic mapping of living cells by atomic force microscopy [J].
A-Hassan, E ;
Heinz, WF ;
Antonik, MD ;
D'Costa, NP ;
Nageswaran, S ;
Schoenenberger, CA ;
Hoh, JH .
BIOPHYSICAL JOURNAL, 1998, 74 (03) :1564-1578
[2]   Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes [J].
Ajubi, NE ;
Klein-Nulend, J ;
Alblas, MJ ;
Burger, EH ;
Nijweide, PJ .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1999, 276 (01) :E171-E178
[3]   Mechanoreception at the cellular level: The detection, interpretation, and diversity of responses to mechanical signals [J].
Banes, AJ ;
Tsuzaki, M ;
Yamamoto, J ;
Fischer, T ;
Brigman, B ;
Brown, T ;
Miller, L .
BIOCHEMISTRY AND CELL BIOLOGY, 1995, 73 (7-8) :349-365
[4]   SUBCELLULAR-DISTRIBUTION OF SHEAR-STRESS AT THE SURFACE OF FLOW-ALIGNED AND NONALIGNED ENDOTHELIAL MONOLAYERS [J].
BARBEE, KA ;
MUNDEL, T ;
LAL, R ;
DAVIES, PF .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1995, 268 (04) :H1765-H1772
[5]   Loading paradigms, Intentional and unintentional, for cell culture mechanostimulus [J].
Brown, TD ;
Bottlang, M ;
Pedersen, DR ;
Banes, AJ .
AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 1998, 316 (03) :162-168
[6]   Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity [J].
Butler, PJ ;
Norwich, G ;
Weinbaum, S ;
Chien, S .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2001, 280 (04) :C962-C969
[7]   Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate [J].
Caille, N ;
Tardy, Y ;
Meister, JJ .
ANNALS OF BIOMEDICAL ENGINEERING, 1998, 26 (03) :409-416
[8]   Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation [J].
Charras, GT ;
Horton, MA .
BIOPHYSICAL JOURNAL, 2002, 82 (06) :2970-2981
[9]   Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions [J].
Charras, GT ;
Lehenkari, PP ;
Horton, MA .
ULTRAMICROSCOPY, 2001, 86 (1-2) :85-95
[10]   Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells [J].
Chen, JX ;
Fabry, B ;
Schiffrin, EL ;
Wang, N .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2001, 280 (06) :C1475-C1484