Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise:: Frequentist analyses -: art. no. 122002

被引:29
作者
Allen, B
Creighton, JDE
Flanagan, ÉÉ
Romano, JD
机构
[1] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA
[2] Cornell Univ, Newman Lab Nucl Studies, Ithaca, NY 14853 USA
[3] Univ Texas, Dept Phys Sci, Brownsville, TX 78520 USA
来源
PHYSICAL REVIEW D | 2002年 / 65卷 / 12期
关键词
D O I
10.1103/PhysRevD.65.122002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gravitational wave detectors will need optimal signal-processing algorithms to extract weak signals from the detector noise. Most algorithms designed to date are based on the unrealistic assumption that the detector noise may be modeled as a stationary Gaussian process. However most experiments exhibit a non-Gaussian "tail" in the probability distribution. This "excess" of large signals can be a troublesome source of false alarms. This article derives an optimal (in the Neyman-Pearson sense, for weak signals) signal processing strategy when the detector noise is non-Gaussian and exhibits tail terms. This strategy is robust, meaning that it is close to optimal for Gaussian noise but far less sensitive than conventional methods to the excess large events that form the tail of the distribution. The method is analyzed for two different signal analysis problems: (i) a known waveform (e.g., a binary inspiral chirp) and (ii) a stochastic background, which requires a multi-detector signal processing algorithm. The methods should be easy to implement: they amount to truncation or clipping of sample values which lie in the outlier part of the probability distribution.
引用
收藏
页数:18
相关论文
共 21 条
  • [1] LIGO - THE LASER-INTERFEROMETER-GRAVITATIONAL-WAVE-OBSERVATORY
    ABRAMOVICI, A
    ALTHOUSE, WE
    DREVER, RWP
    GURSEL, Y
    KAWAMURA, S
    RAAB, FJ
    SHOEMAKER, D
    SIEVERS, L
    SPERO, RE
    THORNE, KS
    VOGT, RE
    WEISS, R
    WHITCOMB, SE
    ZUCKER, ME
    [J]. SCIENCE, 1992, 256 (5055) : 325 - 333
  • [2] Is the squeezing of relic gravitational waves produced by inflation detectable?: art. no. 024024
    Allen, B
    Flanagan, ÉÉ
    Papa, MA
    [J]. PHYSICAL REVIEW D, 2000, 61 (02)
  • [3] Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities
    Allen, B
    Romano, JD
    [J]. PHYSICAL REVIEW D, 1999, 59 (10):
  • [4] ALLEN B, 1997, P HOUCH SCH ASTR SOU
  • [5] LONG-TERM OPERATION OF THE ROME EXPLORER CRYOGENIC GRAVITATIONAL-WAVE DETECTOR
    ASTONE, P
    BASSAN, M
    BONIFAZI, P
    CARELLI, P
    CASTELLANO, MG
    CAVALLARI, G
    COCCIA, E
    COSMELLI, C
    FAFONE, V
    FRASCA, S
    MAJORANA, E
    MODENA, I
    PALLOTTINO, GV
    PIZZELLA, G
    RAPAGNANI, P
    RICCI, F
    VISCO, M
    [J]. PHYSICAL REVIEW D, 1993, 47 (02): : 362 - 375
  • [6] LIGO and the detection of gravitational waves
    Barish, BC
    Weiss, R
    [J]. PHYSICS TODAY, 1999, 52 (10) : 44 - 50
  • [7] THE VIRGO PROJECT - A WIDE BAND ANTENNA FOR GRAVITATIONAL-WAVE DETECTION
    BRADASCHIA, C
    DELFABBRO, R
    DIVIRGILIO, A
    GIAZOTTO, A
    KAUTZKY, H
    MONTELATICI, V
    PASSUELLO, D
    BRILLET, A
    CREGUT, O
    HELLO, P
    MAN, CN
    MANH, PT
    MARRAUD, A
    SHOEMAKER, D
    VINET, JY
    BARONE, F
    DIFIORE, L
    MILANO, L
    RUSSO, G
    AGUIRREGABIRIA, JM
    BEL, H
    DURUISSEAU, JP
    LEDENMAT, G
    TOURRENC, P
    CAPOZZI, M
    LONGO, M
    LOPS, M
    PINTO, I
    ROTOLI, G
    DAMOUR, T
    BONAZZOLA, S
    MARCK, JA
    GOURGHOULON, Y
    HOLLOWAY, LE
    FULIGNI, F
    IAFOLLA, V
    NATALE, G
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1990, 289 (03) : 518 - 525
  • [8] BRADASCHIA C, 1990, GRAVITATION 1990
  • [9] CERDONIO M, 1995, GRAVITATIONAL WAVE E, P176
  • [10] COCCIA E, 1995, GRAVITATIONAL WAVE E, P161