Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis

被引:193
作者
Newton, A. Jamila
Kirchhausen, Tom
Murthy, Venkatesh N. [1 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, CBR Inst Biomed Res, Boston, MA 02115 USA
关键词
clathrin; hippocampal; vesicle recycling; kiss-and-run;
D O I
10.1073/pnas.0606212103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability of synapses to sustain signal propagation relies on rapid recycling of transmitter-containing presynaptic vesicles. Clathrin- and dynamin-mediated retrieval of vesicular membrane has an undisputed role in synaptic vesicle recycling. There is also evidence for other modes of vesicle retrieval, including bulk retrieval and the so-called kiss-and-run recycling. Whether dynamin in required for these other modes of synaptic vesicle endocytosis remains unclear. Here, we have tested the role of dynamin in synaptic vesicle endocytosis by using a small molecule called dynasore, which rapidly inhibits the GTPase activity of dynamin with high specificity. Endocytosis after sustained or brief stimuli was completely and reversibly blocked by dynasore in cultured hippocampal neurons expressing the fluorescent tracer synaptopHluorin. By contrast, dynasore had no effect on exocytosis. In the presence of dynasore, low-frequency stimulation led to sustained accumulation of synaptopHluorin and other vesicular proteins on the surface membrane at a rate predicted from net exocytosis. These vesicular components remained on surface membranes even after the stimulus was terminated, suggesting that all endocytic events rely on dynamin during low-frequency activity as well as in the period after it. Ultrastructural analysis revealed a reduction in the density of synaptic vesicles and the presence of endocytic structures only at synapses that were stimulated in the presence of dynasore. In sum, our data indicate that dynamin is essential for all forms of compensatory synaptic vesicle endocytosis including any kiss-and-run events.
引用
收藏
页码:17955 / 17960
页数:6
相关论文
共 50 条
[1]   Single synaptic vesicles fusing transiently and successively without loss of identity [J].
Aravanis, AM ;
Pyle, JL ;
Tsien, RW .
NATURE, 2003, 423 (6940) :643-647
[2]   Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells [J].
Artalejo, CR ;
Elhamdani, A ;
Palfrey, HC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :6358-6363
[3]   RAPID ENDOCYTOSIS COUPLED TO EXOCYTOSIS IN ADRENAL CHROMAFFIN CELLS INVOLVES CA2+, GTP, AND DYNAMIN BUT NOT CLATHRIN [J].
ARTALEJO, CR ;
HENLEY, JR ;
MCNIVEN, MA ;
PALFREY, CH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8328-8332
[4]   OPTICAL ANALYSIS OF SYNAPTIC VESICLE RECYCLING AT THE FROG NEUROMUSCULAR-JUNCTION [J].
BETZ, WJ ;
BEWICK, GS .
SCIENCE, 1992, 255 (5041) :200-203
[5]   AMPA receptor trafficking at excitatory synapses [J].
Bredt, DS ;
Nicoll, RA .
NEURON, 2003, 40 (02) :361-379
[6]   The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals [J].
Fernández-Alfonso, T ;
Ryan, TA .
NEURON, 2004, 41 (06) :943-953
[7]   Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling [J].
Fernandez-Alfonso, Tomas ;
Kwan, Ricky ;
Ryan, Timothy A. .
NEURON, 2006, 51 (02) :179-186
[8]  
Fesce Riccardo, 1994, Trends in Cell Biology, V4, P1, DOI 10.1016/0962-8924(94)90025-6
[9]   Three modes of synaptic vesicular recycling revealed by single-vesicle imaging [J].
Gandhi, SP ;
Stevens, CF .
NATURE, 2003, 423 (6940) :607-613
[10]   Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size [J].
Graham, ME ;
O'Callaghan, DW ;
McMahon, HT ;
Burgoyne, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :7124-7129