The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA

被引:212
作者
Yokoi, M
Masutani, C
Maekawa, T
Sugasawa, K
Ohkuma, Y
Hanaoka, F
机构
[1] Osaka Univ, Inst Mol & Cellular Biol, Suita, Osaka 5650871, Japan
[2] RIKEN, Cellular Physiol Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan
[3] Osaka Univ, Inst Mol & Cellular Biol, Suita, Osaka 5650871, Japan
关键词
D O I
10.1074/jbc.275.13.9870
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The xeroderma pigmentosum group C protein complex XPC-HR23B was first isolated as a factor that complemented nucleotide excision repair defects of XP-C cell extracts in vitro. Recent studies have revealed that this protein complex plays an important role in the early steps of global genome nucleotide excision repair, especially in damage recognition, open complex formation, and repair protein complex formation. However, the precise function of XPC-HR23B in global genome repair is still unclear. Here we demonstrate that XPC-HR23B interacts with general transcription factor IIH (TFIIH) both in vivo and in vitro. This interaction is thought to be mediated through the specific affinity of XPC for the TFIIH subunits XPB and/or p62, which are essential for both basal transcription and nucleotide excision repair, Interestingly, association of TFIIH with DNA was observed in both wild-type and XP-A cell extracts but not in XP-C cell extracts, and XPC-HR23B could restore the association of TFIIH with DNA in XP-C cell extracts. Moreover, we found that XPC-HR23B was necessary for efficient association of TFIIH with damaged DNA in cell-free extracts. We conclude that the XPC-HR23B protein complex plays a crucial role in the recruitment of TFIIH to damaged DNA in global genome repair.
引用
收藏
页码:9870 / 9875
页数:6
相关论文
共 46 条
[1]   MAMMALIAN DNA NUCLEOTIDE EXCISION-REPAIR RECONSTITUTED WITH PURIFIED PROTEIN-COMPONENTS [J].
ABOUSSEKHRA, A ;
BIGGERSTAFF, M ;
SHIVJI, MKK ;
VILPO, JA ;
MONCOLLIN, V ;
PODUST, VN ;
PROTIC, M ;
HUBSCHER, U ;
EGLY, JM ;
WOOD, RD .
CELL, 1995, 80 (06) :859-868
[2]   YEAST NUCLEOTIDE EXCISION-REPAIR PROTEINS RAD2 AND RAD4 INTERACT WITH RNA-POLYMERASE-II BASAL TRANSCRIPTION FACTOR-B (TFIIW) [J].
BARDWELL, AJ ;
BARDWELL, L ;
IYER, N ;
SVEJSTRUP, JQ ;
FEAVER, WJ ;
KORNBERG, RD ;
FRIEDBERG, EC .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :3569-3576
[3]  
BOOTSMA D, 1997, GENETIC BASIS HUMAN, pCH9
[4]  
Boulikas T, 1996, ANTICANCER RES, V16, P693
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   A ROLE FOR THE HUMAN SINGLE-STRANDED-DNA BINDING-PROTEIN HSSB/RPA IN AN EARLY STAGE OF NUCLEOTIDE EXCISION REPAIR [J].
COVERLEY, D ;
KENNY, MK ;
LANE, DP ;
WOOD, RD .
NUCLEIC ACIDS RESEARCH, 1992, 20 (15) :3873-3880
[7]   Molecular mechanism of nucleotide excision repair [J].
de Laat, WL ;
Jaspers, NGJ ;
Hoeijmakers, JHJ .
GENES & DEVELOPMENT, 1999, 13 (07) :768-785
[8]   DUAL ROLE OF TFIIH IN DNA EXCISION-REPAIR AND IN TRANSCRIPTION BY RNA-POLYMERASE-II [J].
DRAPKIN, R ;
REARDON, JT ;
ANSARI, A ;
HUANG, JC ;
ZAWEL, L ;
AHN, KJ ;
SANCAR, A ;
REINBERG, D .
NATURE, 1994, 368 (6473) :769-772
[9]   Mechanism of open complex and dual incision formation by human nucleotide excision repair factors [J].
Evans, E ;
Moggs, JG ;
Hwang, JR ;
Egly, JM ;
Wood, RD .
EMBO JOURNAL, 1997, 16 (21) :6559-6573
[10]   A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ [J].
Gibbs, PEM ;
McGregor, WG ;
Maher, VM ;
Nisson, P ;
Lawrence, CW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (12) :6876-6880