Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor

被引:106
作者
Yoon, Jun Jin [1 ]
Chung, Hyun Jung [1 ]
Lee, Hyuk Jin [1 ]
Park, Tae Gwan [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Biol Sci, Taejon 305701, South Korea
关键词
sustained release; heparin; basic FGF; scaffolds; angiogenesis;
D O I
10.1002/jbm.a.30843
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Heparin-immobilized porous biodegradable scaffolds were fabricated to release basic fibroblast growth factor (bFGF) in a sustained manner. Heparin was covalently conjugated onto the surface of macroporous PLGA scaffolds fabricated by a gas-foaming/salt-leaching method. Sustained release of bFGF was successfully achieved for over 20 days due to high affinity of bFGF onto the immobilized heparin. It appears that bFGF release rate was regulated by the specific interaction between bFGF and heparin. The bFGF fraction released from the scaffolds maintained its bioactivity, as judged from determining the proliferation extent of human umbilical vein endothelial cells (HUVECs) in vitro. When heparin-immobilized scaffolds loaded with bFGF were implanted subcutaneously in vivo, they effectively induced the formation of blood vessels in the vicinity of the implant site. This study demonstrated that local and sustained delivery of angiogenic growth factor for tissue regeneration could be achieved by surface modification of porous scaffolds with heparin. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:934 / 942
页数:9
相关论文
共 32 条
[1]   Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds [J].
Andreopoulos, FM ;
Persaud, I .
BIOMATERIALS, 2006, 27 (11) :2468-2476
[2]  
Bruder SP, 1999, CLIN ORTHOP RELAT R, pS68
[3]   Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor [J].
Cai, SS ;
Liu, YC ;
Shu, XZ ;
Prestwich, GD .
BIOMATERIALS, 2005, 26 (30) :6054-6067
[4]  
Chen GP, 2002, MACROMOL BIOSCI, V2, P67, DOI 10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO
[5]  
2-F
[6]   Development of poly-(D,L-lactide-coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis [J].
Cleland, JL ;
Duenas, ET ;
Park, A ;
Daugherty, A ;
Kahn, J ;
Kowalski, J ;
Cuthbertson, A .
JOURNAL OF CONTROLLED RELEASE, 2001, 72 (1-3) :13-24
[7]   Tissue engineering strategies for in vivo neovascularisation [J].
Ennett, AB ;
Mooney, DJ .
EXPERT OPINION ON BIOLOGICAL THERAPY, 2002, 2 (08) :805-818
[8]   BIODEGRADABLE POLYMER SCAFFOLDS FOR TISSUE ENGINEERING [J].
FREED, LE ;
VUNJAKNOVAKOVIC, G ;
BIRON, RJ ;
EAGLES, DB ;
LESNOY, DC ;
BARLOW, SK ;
LANGER, R .
BIO-TECHNOLOGY, 1994, 12 (07) :689-693
[9]   HEPARIN PROTECTS BASIC AND ACIDIC FGF FROM INACTIVATION [J].
GOSPODAROWICZ, D ;
CHENG, J .
JOURNAL OF CELLULAR PHYSIOLOGY, 1986, 128 (03) :475-484
[10]   Scaffolds in tissue engineering bone and cartilage [J].
Hutmacher, DW .
BIOMATERIALS, 2000, 21 (24) :2529-2543