Multiple secondary origins of the anaerobic lifestyle in eukaryotes

被引:79
作者
Embley, T. Martin [1 ]
机构
[1] Newcastle Univ, Div Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国惠康基金;
关键词
mitochondria; hydrogenosomes; mitosomes; anaerobic eukaryote evolution;
D O I
10.1098/rstb.2006.1844
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Classical ideas for early eukaryotic evolution often posited a period of anaerobic evolution producing a nucleated phagocytic cell to engulf the mitochondrial endosymbiont, whose presence allowed the host to colonize emerging aerobic environments. This idea was given credence by the existence of contemporary anaerobic eukaryotes that were thought to primitively lack mitochondria, thus providing examples of the type of host cell needed. However, the groups key to this hypothesis have now been shown to contain previously overlooked mitochondrial homologues called hydrogenosomes or mitosomes; organelles that share common ancestry with mitochondria but which do not carry out aerobic respiration. Mapping these data on the unfolding eukaryotic tree reveals that secondary adaptation to anaerobic habitats is a reoccurring theme among eukaryotes. The apparent ubiquity of mitochondrial homologues bears testament to the importance of the mitochondrial endosymbiosis, perhaps as a founding event, in eukaryotic evolution. Comparative study of different mitochondrial homologues is needed to determine their fundamental importance for contemporary eukaryotic cells.
引用
收藏
页码:1055 / 1067
页数:13
相关论文
共 145 条
[61]   A single eubacterial origin of eukaryotic pyruvate:ferredoxin oxidoreductase genes:: Implications for the evolution of anaerobic eukaryotes [J].
Horner, DS ;
Hirt, RP ;
Embley, TM .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (09) :1280-1291
[62]   Molecular data suggest an early acquisition of the mitochondrion endosymbiont [J].
Horner, DS ;
Hirt, RP ;
Kilvington, S ;
Lloyd, D ;
Embley, TM .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1996, 263 (1373) :1053-1059
[63]   Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes [J].
Horner, DS ;
Embley, TM .
MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (10) :1970-1975
[64]   Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I [J].
Hrdy, I ;
Hirt, RP ;
Dolezal, P ;
Bardonová, L ;
Foster, PG ;
Tachezy, J ;
Embley, TM .
NATURE, 2004, 432 (7017) :618-622
[65]   PRIMARY STRUCTURE AND EUBACTERIAL RELATIONSHIPS OF THE PYRUVATE, FERREDOXIN OXIDOREDUCTASE OF THE AMITOCHONDRIATE EUKARYOTE TRICHOMONAS-VAGINALIS [J].
HRDY, I ;
MULLER, M .
JOURNAL OF MOLECULAR EVOLUTION, 1995, 41 (03) :388-396
[66]   PRIMARY STRUCTURE OF THE HYDROGENOSOMAL MALIC ENZYME OF TRICHOMONAS-VAGINALIS AND ITS RELATIONSHIP TO HOMOLOGOUS ENZYMES [J].
HRDY, I ;
MULLER, M .
JOURNAL OF EUKARYOTIC MICROBIOLOGY, 1995, 42 (05) :593-603
[67]   Covarion shifts cause a long-branch attraction artifact that unites microsporidia and archaebacteria in EF-1α phylogenies [J].
Inagaki, Y ;
Susko, E ;
Fast, NM ;
Roger, AJ .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (07) :1340-1349
[68]   PARACOCCUS-DENITRIFICANS AND EVOLUTIONARY ORIGIN OF MITOCHONDRION [J].
JOHN, P ;
WHATLEY, FR .
NATURE, 1975, 254 (5500) :495-498
[69]   Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi [J].
Katinka, MD ;
Duprat, S ;
Cornillot, E ;
Méténier, G ;
Thomarat, F ;
Prensier, G ;
Barbe, V ;
Peyretaillade, E ;
Brottier, P ;
Wincker, P ;
Delbac, F ;
El Alaoui, H ;
Peyret, P ;
Saurin, W ;
Gouy, M ;
Weissenbach, J ;
Vivarès, CP .
NATURE, 2001, 414 (6862) :450-453
[70]   Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi [J].
Keeling, PJ ;
Luker, MA ;
Palmer, JD .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (01) :23-31