GFINDer:: Genome Function INtegrated Discoverer through dynamic annotation, statistical analysis, and mining

被引:54
作者
Masseroli, M [1 ]
Martucci, D [1 ]
Pinciroli, F [1 ]
机构
[1] Politecn Milan, Dept Bioengn, I-20133 Milan, Italy
关键词
D O I
10.1093/nar/gkh432
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Statistical and clustering analyses of gene expression results from high-density microarray experiments produce lists of hundreds of genes regulated differentially, or with particular expression profiles, in the conditions under study. Independent of the microarray platforms and analysis methods used, these lists must be biologically interpreted to gain a better knowledge of the patho-physiological phenomena involved. To this end, numerous biological annotations are available within heterogeneous and widely distributed databases. Although several tools have been developed for annotating lists of genes, most of them do not give methods for evaluating the relevance of the annotations provided, or for estimating the functional bias introduced by the gene set on the array used to identify the gene list considered. We developed Genome Functional INtegrated Discoverer (GFINDer), a web server able to automatically provide large-scale lists of user-classified genes with functional profiles biologically characterizing the different gene classes in the list. GFINDer automatically retrieves annotations of several functional categories from different sources, identifies the categories enriched in each class of a user-classified gene list and calculates statistical significance values for each category. Moreover, GFINDer enables the functional classification of genes according to mined functional categories and the statistical analysis is of the classifications obtained, aiding better interpretation of microarray experiment results. GFINDer is available online at http://www.medinfopoli.polimi.it/GFINDer/.
引用
收藏
页码:W293 / W300
页数:8
相关论文
共 21 条
[1]   FatiGO:: a web tool for finding significant associations of Gene Ontology terms with groups of genes [J].
Al-Shahrour, F ;
Díaz-Uriarte, R ;
Dopazo, J .
BIOINFORMATICS, 2004, 20 (04) :578-580
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   The Mouse Genome Database (MGD), a comprehensive public resource of genetic, phenotypic and genomic data [J].
Blake, JA ;
Richardson, JE ;
Davisson, MT ;
Eppig, JT ;
Battles, J ;
Begley, D ;
Blackburn, R ;
Bradt, D ;
Colby, G ;
Corbani, L ;
Davis, G ;
Doolittle, D ;
Drake, T ;
Frazer, K ;
Gilbert, J ;
Grant, P ;
LennonPierce, M ;
Maltais, L ;
May, M ;
McIntire, M ;
Merriam, J ;
Ormsby, J ;
Palazola, R ;
Ringwald, M ;
Rockwood, S ;
Sharpe, S ;
Shaw, D ;
Reed, D ;
StanleyWalls, M ;
Taylor, L .
NUCLEIC ACIDS RESEARCH, 1997, 25 (01) :85-91
[4]   The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 [J].
Boeckmann, B ;
Bairoch, A ;
Apweiler, R ;
Blatter, MC ;
Estreicher, A ;
Gasteiger, E ;
Martin, MJ ;
Michoud, K ;
O'Donovan, C ;
Phan, I ;
Pilbout, S ;
Schneider, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :365-370
[5]  
Casella G., 2002, STAT INFERENCE
[6]   DAVID: Database for annotation, visualization, and integrated discovery [J].
Dennis, G ;
Sherman, BT ;
Hosack, DA ;
Yang, J ;
Gao, W ;
Lane, HC ;
Lempicki, RA .
GENOME BIOLOGY, 2003, 4 (09)
[7]   MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data [J].
Doniger, SW ;
Salomonis, N ;
Dahlquist, KD ;
Vranizan, K ;
Lawlor, SC ;
Conklin, BR .
GENOME BIOLOGY, 2003, 4 (01)
[8]  
Fisher L.D., 1993, BIOSTATISTICS METHOD
[9]  
Koch GG., 2001, CATEGORICAL DATA ANA
[10]   GDB: the Human Genome Database [J].
Letovsky, SI ;
Cottingham, RW ;
Porter, CJ ;
Li, PWD .
NUCLEIC ACIDS RESEARCH, 1998, 26 (01) :94-99