Reverse methanogenesis: Testing the hypothesis with environmental genomics

被引:500
作者
Hallam, SJ
Putnam, N
Preston, CM
Detter, JC
Rokhsar, D
Richardson, PM
DeLong, EF
机构
[1] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95064 USA
[2] Joint Genome Inst, Walnut Creek, CA 94598 USA
关键词
D O I
10.1126/science.1100025
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microbial methane consumption in anoxic sediments significantly impacts the global environment by reducing the flux of greenhouse gases from ocean to atmosphere. Despite its significance, the biological mechanisms controlling anaerobic methane oxidation are not well characterized. One current model suggests that relatives of methane-producing Archaea, developed the capacity to reverse methanogenesis and thereby to consume methane to produce cellular carbon and energy. We report here a test of the "reverse-methanogenesis" hypothesis by genomic analyses of methane-oxidizing Archaea, from deep-sea sediments. Our results show that nearly all genes typically associated with methane production are present in one specific group of archaeal methanotrophs. These genome-based observations support previous hypotheses and provide an informed foundation for metabolic modeling of anaerobic methane oxidation.
引用
收藏
页码:1457 / 1462
页数:6
相关论文
共 24 条
[1]   Catalytic and thermodynamic properties of tetrahydromethanopterindependent serine hydroxymethyltransferase from Methanococcus jannaschii [J].
Angelaccio, S ;
Chiaraluce, R ;
Consalvi, V ;
Buchenau, B ;
Giangiacomo, L ;
Bossa, F ;
Contestabile, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (43) :41789-41797
[2]   A marine microbial consortium apparently mediating anaerobic oxidation of methane [J].
Boetius, A ;
Ravenschlag, K ;
Schubert, CJ ;
Rickert, D ;
Widdel, F ;
Gieseke, A ;
Amann, R ;
Jorgensen, BB ;
Witte, U ;
Pfannkuche, O .
NATURE, 2000, 407 (6804) :623-626
[3]   Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates [J].
Borowski, WS ;
Paull, CK ;
Ussler, W .
MARINE GEOLOGY, 1999, 159 (1-4) :131-154
[4]   Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph [J].
Chistoserdova, L ;
Gomelsky, L ;
Vorholt, JA ;
Gomelsky, M ;
Tsygankov, YD ;
Lidstrom, ME .
MICROBIOLOGY-SGM, 2000, 146 :233-238
[5]   Metabolic activity of subsurface life in deep-sea sediments [J].
D'Hondt, S ;
Rutherford, S ;
Spivack, AJ .
SCIENCE, 2002, 295 (5562) :2067-2070
[6]   Microbial population genomics and ecology [J].
DeLong, EF .
CURRENT OPINION IN MICROBIOLOGY, 2002, 5 (05) :520-524
[7]   Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea [J].
Hallam, SJ ;
Girguis, PR ;
Preston, CM ;
Richardson, PM ;
DeLong, EF .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (09) :5483-5491
[8]   Methane-consuming archaebacteria in marine sediments [J].
Hinrichs, KU ;
Hayes, JM ;
Sylva, SP ;
Brewer, PG ;
DeLong, EF .
NATURE, 1999, 398 (6730) :802-805
[9]  
Hoehler TM, 1996, MICROBIAL GROWTH ON C(1) COMPOUNDS, P326
[10]   ANAEROBIC METHANE OXIDATION RATES AT THE SULFATE METHANE TRANSITION IN MARINE-SEDIMENTS FROM KATTEGAT AND SKAGERRAK (DENMARK) [J].
IVERSEN, N ;
JORGENSEN, BB .
LIMNOLOGY AND OCEANOGRAPHY, 1985, 30 (05) :944-955