Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution

被引:44
作者
Chang, BS
Beauvais, RM
Arakawa, T
Narhi, LO
Dong, AC
Aparisio, DI
Carpenter, JF
机构
[1] AMGEN INC,DEPT PROT CHEM,THOUSAND OAKS,CA 91320
[2] UNIV COLORADO,HLTH SCI CTR,SCH PHARM,DENVER,CO 80262
[3] AMGEN INC,DEPT ANALYT RESOURCES,BOULDER,CO 80301
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0006-3495(96)79534-6
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The degradation products of recombinant human interleukin-1 receptor antagonist (rhlL-1ra) formed during storage at 30 degrees C in aqueous solution were characterized. Cationic exchange chromatography of the stored sample showed two major, new peaks eluting before (P1) and after (L2) the native protein, which were interconvertible. Size-exclusion chromatography and electrophoresis documented that both the P1 and L2 fractions were irreversible dimers, formed by noncovalent interactions. A competition assay with interleukin-1 indicated that on a per monomer basis the P1 and L2 dimers retained about two-thirds of the activity of the native monomer. Infrared and far-UV circular dichroism spectroscopies showed that only minor alterations in secondary structure arose upon the formation of the P1 dimer. However, alteration in the near-UV circular dichroism spectrum suggested the presence of disulfide bonds in the P1 dimer, which are absent in the native protein. Mass spectroscopy and tryptic mapping, before and after carboxymethylation, demonstrated that the P1 dimer contained an intramolecular disulfide bond between Cys-66 and Cys-69. Although conversion of native protein to the P1 dimer was irreversible in buffer alone, the native monomer could be regained by denaturing the P1 dimer with guanidine hydrochloride and renaturing it by dialysis, suggesting that the intramolecular disulfide bond does not interfere with refolding. Analysis of the time course of P1 formation during storage at 30 degrees C indicated that the process followed first-order, and not second-order, kinetics, suggesting that the rate-limiting step was not dimerization. It is proposed that a conformational change in the monomer is the rate-limiting step in the formation of the P1 dimer degradation product. Sucrose stabilized the native monomer against this process. This result can be explained by the general stabilization mechanism for this additive, which is due to its preferential exclusion from the protein surface.
引用
收藏
页码:3399 / 3406
页数:8
相关论文
共 37 条
[1]   CRYSTAL-STRUCTURE OF BASIC FIBROBLAST GROWTH-FACTOR AT 1.6 A RESOLUTION [J].
AGO, H ;
KITAGAWA, Y ;
FUJISHIMA, A ;
MATSUURA, Y ;
KATSUBE, Y .
JOURNAL OF BIOCHEMISTRY, 1991, 110 (03) :360-363
[2]   STABILIZATION OF PROTEIN-STRUCTURE BY SUGARS [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1982, 21 (25) :6536-6544
[3]   THE STABILIZATION OF PROTEINS BY OSMOLYTES [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOPHYSICAL JOURNAL, 1985, 47 (03) :411-414
[4]   FACTORS AFFECTING SHORT-TERM AND LONG-TERM STABILITIES OF PROTEINS [J].
ARAKAWA, T ;
PRESTRELSKI, SJ ;
KENNEY, WC ;
CARPENTER, JF .
ADVANCED DRUG DELIVERY REVIEWS, 1993, 10 (01) :1-28
[5]  
BENSON SW, 1960, F CHEM KINETICS
[6]   AGGREGATION PATHWAY OF RECOMBINANT HUMAN KERATINOCYTE GROWTH-FACTOR AND ITS STABILIZATION [J].
CHEN, BL ;
ARAKAWA, T ;
MORRIS, CF ;
KENNEY, WC ;
WELLS, CM ;
PITT, CG .
PHARMACEUTICAL RESEARCH, 1994, 11 (11) :1581-1587
[7]   HIGH-RESOLUTION 3-DIMENSIONAL STRUCTURE OF INTERLEUKIN-1-BETA IN SOLUTION BY 3-DIMENSIONAL AND 4-DIMENSIONAL NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY [J].
CLORE, GM ;
WINGFIELD, PT ;
GRONENBORN, AM .
BIOCHEMISTRY, 1991, 30 (09) :2315-2323
[8]   PROTEIN SECONDARY STRUCTURES IN WATER FROM 2ND-DERIVATIVE AMIDE-I INFRARED-SPECTRA [J].
DONG, A ;
HUANG, P ;
CAUGHEY, WS .
BIOCHEMISTRY, 1990, 29 (13) :3303-3308
[9]  
DONG AC, 1994, METHOD ENZYMOL, V232, P139
[10]   INFRARED SPECTROSCOPIC STUDIES OF LYOPHILIZATION-INDUCED AND TEMPERATURE-INDUCED PROTEIN AGGREGATION [J].
DONG, AC ;
PRESTRELSKI, SJ ;
ALLISON, SD ;
CARPENTER, JF .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1995, 84 (04) :415-424