Persistence, attractivity, and delay in facultative mutualism

被引:88
作者
He, XZ [1 ]
Gopalsamy, K [1 ]
机构
[1] UNIV ADELAIDE,DEPT MATH & STAT,ADELAIDE,SA 5001,AUSTRALIA
关键词
D O I
10.1006/jmaa.1997.5632
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Relations between persistence and ultimate boundedness of the solutions of the Lotka-Volterra system dx(t)/dt = x(t)[r(1) - a(11)x(t - tau) + a(22)y(t - tau)] dy(t)/dt = y(t)[r(2) + a(21)x(t - tau) - a(22)y(t - tau)] modelling ''facultative mutualism'' with delayed responses are established and sufficient conditions are obtained for the global attractivity of the positive equilibrium of the delay system. (C) 1997 Academic Press.
引用
收藏
页码:154 / 173
页数:20
相关论文
共 30 条
[1]  
[Anonymous], J MATH ANAL APPL
[2]  
[Anonymous], [No title captured]
[3]   STABILITY AND TRANSIENT BEHAVIOR OF COMPOSITE NONLINEAR-SYSTEMS [J].
ARAKI, M ;
KONDO, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (04) :537-&
[4]  
Barbalat I., 1959, REV ROUMAINE MATH PU, V4, P267
[5]   THE ECOLOGY OF MUTUALISM [J].
BOUCHER, DH ;
JAMES, S ;
KEELER, KH .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1982, 13 :315-347
[6]   THE EFFECT OF DELAYS ON THE PERMANENCE FOR LOTKA-VOLTERRA SYSTEMS [J].
CHEN, LS ;
LU, ZY ;
WANG, WD .
APPLIED MATHEMATICS LETTERS, 1995, 8 (04) :71-73
[7]  
Cushing J.M., 1977, LECT NOTES BIOMATH, V20
[8]  
DANGELIS DL, 1986, POSITIVE FEEDBACK NA
[9]  
DEAN AM, 1983, AM NAT, V12, P409
[10]  
Freedman H.I., 1988, INDIAN J MATH, V30, P175