Spinning strings in AdS5xS5:: New integrable system relations -: art. no. 086009

被引:244
作者
Arutyunov, G
Russo, J
Tseytlin, AA
机构
[1] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
[2] Univ Barcelona, Fac Fis, Dept ECM, ICREA, E-08007 Barcelona, Spain
[3] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[4] Lebedev Inst, Moscow, Russia
[5] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
来源
PHYSICAL REVIEW D | 2004年 / 69卷 / 08期
关键词
D O I
10.1103/PhysRevD.69.086009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A general class of rotating closed string solutions in AdS(5)xS(5) is shown to be described by a Neumann-Rosochatius one-dimensional integrable system. The latter represents an oscillator on a sphere or a hyperboloid with an additional "centrifugal" potential. We expect that the reduction of the AdS(5)xS(5) sigma model to the Neumann-Rosochatius system should have further generalizations and should be useful for uncovering new relations between integrable structures on two sides of the AdS/conformal field theory (CFT) duality. We find, in particular, new circular rotating string solutions with two AdS(5) and three S-5 spins. As in other recently discussed examples, the leading large-spin correction to the classical energy turns out to be proportional to the square of the string tension or the 't Hooft coupling lambda, suggesting that it can be matched onto the one-loop anomalous dimensions of the corresponding "long" operators on the super-Yang-Mills side of the AdS/CFT duality.
引用
收藏
页数:18
相关论文
共 52 条
[1]   COMPLETELY INTEGRABLE SYSTEMS, EUCLIDEAN LIE-ALGEBRAS, AND CURVES [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1980, 38 (03) :267-317
[2]  
Alday LF, 2003, J HIGH ENERGY PHYS
[3]  
Aleksandrova D, 2003, J HIGH ENERGY PHYS
[4]  
ALEKSANDROVA D, HEPTH0308087
[5]   Spinning strings in AdS5 X S5 and integrable systems [J].
Arutyunov, G ;
Frolov, S ;
Russo, J ;
Tseytlin, AA .
NUCLEAR PHYSICS B, 2003, 671 (1-3) :3-50
[6]  
ARUTYUNOV G, HEPTH0310182
[7]   ALTERNATIVE LAX STRUCTURES FOR THE CLASSICAL AND QUANTUM NEUMANN MODEL [J].
AVAN, J ;
TALON, M .
PHYSICS LETTERS B, 1991, 268 (02) :209-216
[8]   SEPARATION OF VARIABLES FOR THE CLASSICAL AND QUANTUM NEUMANN MODEL [J].
BABELON, O ;
TALON, M .
NUCLEAR PHYSICS B, 1992, 379 (1-2) :321-339
[9]   RELATIVISTIC STRING MODEL IN A SPACE-TIME OF A CONSTANT CURVATURE [J].
BARBASHOV, BM ;
NESTERENKO, VV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :499-506
[10]  
BARBASHOVBM, 1990, INTRO RELATIVISTIC S, P249