ALTERNATIVE LAX STRUCTURES FOR THE CLASSICAL AND QUANTUM NEUMANN MODEL

被引:13
作者
AVAN, J [1 ]
TALON, M [1 ]
机构
[1] UNIV PARIS 06,PHYS THEOR & HAUTES ENERGIES LAB,F-75252 PARIS,FRANCE
关键词
D O I
10.1016/0370-2693(91)90805-Z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A Lax representation by sl(2, C) matrices, following from the geometrical formulation of Moser,is introduced for the Neumann model. Its Poisson bracket structure is given by the rational antisymmetric sl(2, C) R-matrix. The quantum version of its determinant, suitably ordered, gives rise to commuting operators, exact counterparts of the classical Uhlenbeck conserved quantities.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 20 条
[1]   DUAL MOMENT MAPS INTO LOOP ALGEBRAS [J].
ADAMS, MR ;
HARNAD, J ;
HURTUBISE, J .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (04) :299-308
[2]  
ADLER M, 1979, INVENT MATH, V50, P219
[3]   COMPLETELY INTEGRABLE SYSTEMS, EUCLIDEAN LIE-ALGEBRAS, AND CURVES [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1980, 38 (03) :267-317
[4]   POISSON STRUCTURE AND INTEGRABILITY OF THE NEUMANN-MOSER-UHLENBECK MODEL [J].
AVAN, J ;
TALON, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (23) :4477-4488
[5]   GRADED R-MATRICES FOR INTEGRABLE SYSTEMS [J].
AVAN, J ;
TALON, M .
NUCLEAR PHYSICS B, 1991, 352 (01) :215-249
[6]   FROM RATIONAL TO TRIGONOMETRIC R-MATRICES [J].
AVAN, J .
PHYSICS LETTERS A, 1991, 156 (1-2) :61-68
[7]   HAMILTONIAN STRUCTURES AND LAX EQUATIONS [J].
BABELON, O ;
VIALLET, CM .
PHYSICS LETTERS B, 1990, 237 (3-4) :411-416
[8]  
BELAVIN AA, 1984, SOV SCI REV C, V4, P93
[9]  
Drinfeld V.G., 1983, SOVIET MATH DOKL, V27, P68
[10]  
FADDEEV LD, 1983, THEOR MATH PHYS, V56, P323