GRADED R-MATRICES FOR INTEGRABLE SYSTEMS

被引:18
作者
AVAN, J [1 ]
TALON, M [1 ]
机构
[1] UNIV PARIS 07, LPTHE, CNRS, UA 280, F-75252 PARIS 05, FRANCE
关键词
D O I
10.1016/0550-3213(91)90135-K
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present here the construction of non-skew-symmetric classical R-matrices with a finite number of poles associated with graded Lie algebras, using a generalized version of the mean procedure of Faddeev-Reshetikhin. Examples of the corresponding integrable systems in classical mechanics and field theory are introduced. A universal canonical realization of these structures is then given. The interpretation of these R-matrices as regularizations of the trigonometric R-matrices, and some extensions of this construction, in particular to elliptic R-matrices, are also described.
引用
收藏
页码:215 / 249
页数:35
相关论文
共 58 条
[1]   COMPLETELY INTEGRABLE SYSTEMS, EUCLIDEAN LIE-ALGEBRAS, AND CURVES [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1980, 38 (03) :267-317
[2]  
[Anonymous], 1971, FUNCT ANAL APPL+, DOI [DOI 10.1007/BF01086739, 10.1007/BF01086739]
[3]  
Arnold VI., 1978, MATH METHODS CLASSIC, DOI 10.1007/978-1-4757-1693-1
[4]   CONSTRUCTION OF INSTANTONS [J].
ATIYAH, MF ;
HITCHIN, NJ ;
DRINFELD, VG ;
MANIN, YI .
PHYSICS LETTERS A, 1978, 65 (03) :185-187
[5]   R-MATRICES AND SYMMETRIC-SPACES [J].
AVAN, J ;
MAILLARD, JM ;
TALON, M .
PHYSICS LETTERS B, 1990, 243 (1-2) :116-120
[6]   THE ADLER-VANMOERBEKE MODEL - LAX REPRESENTATION AND POISSON STRUCTURE [J].
AVAN, J ;
MAILLARD, JM ;
TALON, M .
PHYSICS LETTERS B, 1990, 240 (1-2) :145-148
[7]   RATIONAL AND TRIGONOMETRIC CONSTANT NON-ANTISYMMETRIC R-MATRICES [J].
AVAN, J ;
TALON, M .
PHYSICS LETTERS B, 1990, 241 (01) :77-82
[8]   GRADED LIE-ALGEBRAS IN THE YANG-BAXTER EQUATION [J].
AVAN, J .
PHYSICS LETTERS B, 1990, 245 (3-4) :491-496
[9]   CURRENT-ALGEBRA REALIZATION OF R-MATRICES ASSOCIATED TO Z2-GRADED LIE-ALGEBRAS [J].
AVAN, J .
PHYSICS LETTERS B, 1990, 252 (02) :230-236
[10]  
AVAN J, 1990, IN PRESS INT J MOD A