RATIONAL AND TRIGONOMETRIC CONSTANT NON-ANTISYMMETRIC R-MATRICES

被引:54
作者
AVAN, J
TALON, M
机构
[1] Laboratoire de Physique Théorique et Hautes Energies1 1 Unité associée no. 280.
[2] 4, place Jussieu
关键词
D O I
10.1016/0370-2693(90)91490-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe classes of solutions of the Yang-Baxter equation, obeyed by the non-antisymmetric constant R-matrices describing the general structure of Poisson brackets of Lax operators for classically integrable systems. Besides the well-known rational antisymmetric solutions, we display associated non-antisymmetric rational ones. We also construct an example of a trigonometric non-antisymmetric matrix, associated with sl(2, c). © 1990.
引用
收藏
页码:77 / 82
页数:6
相关论文
共 17 条
[1]   COMPLETELY INTEGRABLE SYSTEMS, EUCLIDEAN LIE-ALGEBRAS, AND CURVES [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1980, 38 (03) :267-317
[2]  
AVAN J, 1990, PARLPTHE9002 PREPR
[3]  
AVAN J, 1989, PARLPTHE8940 PREPR
[4]   HAMILTONIAN STRUCTURES AND LAX EQUATIONS [J].
BABELON, O ;
VIALLET, CM .
PHYSICS LETTERS B, 1990, 237 (3-4) :411-416
[5]  
BABELON O, 1990, PARLPTHE9006 PREPR
[6]  
BELAVIN AA, 1982, FUNCT ANAL APPL+, V16, P159
[7]  
BELAVIN AA, 1984, SOV SCI REV C, V4, P93
[8]  
BELAVIN AA, 1984, FUNCT ANAL APPL, V17, P220
[9]  
Drinfeld V.G., 1983, SOVIET MATH DOKL, V27, P68
[10]  
FADDEEV LD, 1983, THEOR MATH PHYS, V56, P323