HAMILTONIAN STRUCTURES AND LAX EQUATIONS

被引:245
作者
BABELON, O
VIALLET, CM
机构
[1] Laboratoire de Physique Théorique et des Hautes Energies, Université Paris 6, F-75252 Paris Cedex 05, Tour 16, ler etage
关键词
D O I
10.1016/0370-2693(90)91198-K
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that any hamiltonian system, which is integrable in the sense of Liouville, admits a Lax representation, at least locally at generic points in phase space. We introduce the most general Poisson bracket ensuring the involution property of the integrals of motion and existence of a Lax pair. We give examples of the structure we describe. © 1990.
引用
收藏
页码:411 / 416
页数:6
相关论文
共 12 条
[1]  
Arnold V.I., 1976, METHODES MATH MECANI
[2]  
AVAN J, UNPUB INTEGRABILITY
[3]  
FADDEEV LD, 1986, HAMILTONIAN METHODS
[4]  
KOSMANNSCHWARZB.Y, 1988, 17 INT C DIFF GEOM M
[6]  
LIOUVILLE J, 1855, J MAT LIOUVILLE, V20, P137
[7]  
MAGRI F, 1988, C MECANIQUE ANAL LAG
[8]   KAC-MOODY ALGEBRA AND EXTENDED YANG-BAXTER RELATIONS IN THE O(N) NON-LINEAR SIGMA-MODEL [J].
MAILLET, JM .
PHYSICS LETTERS B, 1985, 162 (1-3) :137-142
[9]   NEW INTEGRABLE CANONICAL STRUCTURES IN TWO-DIMENSIONAL MODELS [J].
MAILLET, JM .
NUCLEAR PHYSICS B, 1986, 269 (01) :54-76
[10]   HAMILTONIAN STRUCTURES FOR INTEGRABLE CLASSICAL-THEORIES FROM GRADED KAC-MOODY ALGEBRAS [J].
MAILLET, JM .
PHYSICS LETTERS B, 1986, 167 (04) :401-405