THE ADLER-VANMOERBEKE MODEL - LAX REPRESENTATION AND POISSON STRUCTURE

被引:4
作者
AVAN, J
MAILLARD, JM
TALON, M
机构
[1] LPTHE1 1 U.A.280., Université Paris VI, Tour 16, ler étage, 4, Place Jussieu
关键词
D O I
10.1016/0370-2693(90)90423-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the classical integrability of the Adler-van Moerbeke model, describing in particular cases the motion on an ellipsoid with a central force. Classical integrability is associated with a generalized structure for the Poisson brackets of the Lax operator. The already known set of conserved quantities for this model turns out to follow straightforwardly from this structure. © 1990.
引用
收藏
页码:145 / 148
页数:4
相关论文
共 16 条
[1]   COMPLETELY INTEGRABLE SYSTEMS, EUCLIDEAN LIE-ALGEBRAS, AND CURVES [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1980, 38 (03) :267-317
[2]  
ADLER M, 1979, INVENT MATH, V50, P3
[3]  
AVAN J, 1990, PAR LPTHE9040 PREPR
[4]  
AVAN J, 1989, PAR LPTHE8940 PREPR
[5]   HAMILTONIAN STRUCTURES AND LAX EQUATIONS [J].
BABELON, O ;
VIALLET, CM .
PHYSICS LETTERS B, 1990, 237 (3-4) :411-416
[6]  
BABELON O, 1990, PAR LPTHE9095 PREPR
[7]  
BABELON O, 1989, SISSA54EP PREPR
[8]  
FADDEEV LD, 1982, P LES HOUCHES
[9]  
Kirillov A.A., 1974, ELEMENTS THEORIE REP
[10]   SOLUTION TO A GENERALIZED TODA LATTICE AND REPRESENTATION THEORY [J].
KOSTANT, B .
ADVANCES IN MATHEMATICS, 1979, 34 (03) :195-338