FROM RATIONAL TO TRIGONOMETRIC R-MATRICES

被引:5
作者
AVAN, J
机构
[1] Brown University Physics Department, Providence
关键词
D O I
10.1016/0375-9601(91)90127-T
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The skew-symmetric trigonometric R-matrices in the classification of Belavin and Drinfel'd are shown to be particular elements of a linear set of R-matrices arising from the deformation of the canonical non-skew-symmetric q-pole R-matrix belonging to the Lie algebra gxgxC(lambda, mu). This deformation is consistent only when the Lie algebra automorphism defining the q-pole R-matrix is a Coxeter automorphism. This linear deformation is the only one allowed when the algebraic structure of R as an element of gxg is required to be preserved, at least when g = sl (2, C).
引用
收藏
页码:61 / 68
页数:8
相关论文
共 10 条
[1]   RATIONAL AND TRIGONOMETRIC CONSTANT NON-ANTISYMMETRIC R-MATRICES [J].
AVAN, J ;
TALON, M .
PHYSICS LETTERS B, 1990, 241 (01) :77-82
[2]   GRADED R-MATRICES FOR INTEGRABLE SYSTEMS [J].
AVAN, J ;
TALON, M .
NUCLEAR PHYSICS B, 1991, 352 (01) :215-249
[3]  
AVAN J, 1991, PHYS LETT B, V252, P230
[4]   HAMILTONIAN STRUCTURES AND LAX EQUATIONS [J].
BABELON, O ;
VIALLET, CM .
PHYSICS LETTERS B, 1990, 237 (3-4) :411-416
[5]  
BELAVIN AA, 1984, SOV SCI REV C, V4, P93
[6]  
FADDEEV LD, 1983, THEOR MATH PHYS, V56, P323
[7]  
Kirillov A.A., 1974, ELEMENTS THEORIE REP
[8]   HAMILTONIAN STRUCTURES FOR INTEGRABLE CLASSICAL-THEORIES FROM GRADED KAC-MOODY ALGEBRAS [J].
MAILLET, JM .
PHYSICS LETTERS B, 1986, 167 (04) :401-405
[9]  
Mikhailov A.V., 1979, JETP LETT, V30, P443
[10]  
SEMENOVTYANSHANSKII MA, 1983, FUNCT ANAL APPL+, V17, P259