Accuracy of Predicting the Genetic Risk of Disease Using a Genome-Wide Approach

被引:504
作者
Daetwyler, Hans D. [1 ,2 ]
Villanueva, Beatriz [3 ]
Woolliams, John A. [1 ]
机构
[1] Univ Edinburgh, Roslin Inst, Roslin, Midlothian, Scotland
[2] Wageningen Univ, Anim Breeding & Genom Ctr, Wageningen, Netherlands
[3] Scottish Agr Coll, Sustainable Livestock Syst, Edinburgh, Midlothian, Scotland
来源
PLOS ONE | 2008年 / 3卷 / 10期
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1371/journal.pone.0003395
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The prediction of the genetic disease risk of an individual is a powerful public health tool. While predicting risk has been successful in diseases which follow simple Mendelian inheritance, it has proven challenging in complex diseases for which a large number of loci contribute to the genetic variance. The large numbers of single nucleotide polymorphisms now available provide new opportunities for predicting genetic risk of complex diseases with high accuracy. Methodology/Principal Findings: We have derived simple deterministic formulae to predict the accuracy of predicted genetic risk from population or case control studies using a genome-wide approach and assuming a dichotomous disease phenotype with an underlying continuous liability. We show that the prediction equations are special cases of the more general problem of predicting the accuracy of estimates of genetic values of a continuous phenotype. Our predictive equations are responsive to all parameters that affect accuracy and they are independent of allele frequency and effect distributions. Deterministic prediction errors when tested by simulation were generally small. The common link among the expressions for accuracy is that they are best summarized as the product of the ratio of number of phenotypic records per number of risk loci and the observed heritability. Conclusions/Significance: This study advances the understanding of the relative power of case control and population studies of disease. The predictions represent an upper bound of accuracy which may be achievable with improved effect estimation methods. The formulae derived will help researchers determine an appropriate sample size to attain a certain accuracy when predicting genetic risk.
引用
收藏
页数:8
相关论文
共 30 条
  • [21] ROBERTSON A, 1949, GENETICS, V34, P395
  • [22] Extent of linkage disequilibrium in Holstein cattle in North America
    Sargolzaei, M.
    Schenkel, F. S.
    Jansen, G. B.
    Schaeffer, L. R.
    [J]. JOURNAL OF DAIRY SCIENCE, 2008, 91 (05) : 2106 - 2117
  • [23] SHRINER D, 2008, NUCLEIC ACIDS RES, P36
  • [24] SOLBERG TR, 2008, J ANIMAL SC IN PRESS
  • [25] Genome-wide genetic association of complex traits in heterogeneous stock mice
    Valdar, William
    Solberg, Leah C.
    Gauguier, Dominique
    Burnett, Stephanie
    Klenerman, Paul
    O Cookson, William
    Taylor, Martin S.
    Rawlins, J. Nicholas P.
    Mott, Richard
    Flint, Jonathan
    [J]. NATURE GENETICS, 2006, 38 (08) : 879 - 887
  • [26] The sequence of the human genome
    Venter, JC
    Adams, MD
    Myers, EW
    Li, PW
    Mural, RJ
    Sutton, GG
    Smith, HO
    Yandell, M
    Evans, CA
    Holt, RA
    Gocayne, JD
    Amanatides, P
    Ballew, RM
    Huson, DH
    Wortman, JR
    Zhang, Q
    Kodira, CD
    Zheng, XQH
    Chen, L
    Skupski, M
    Subramanian, G
    Thomas, PD
    Zhang, JH
    Miklos, GLG
    Nelson, C
    Broder, S
    Clark, AG
    Nadeau, C
    McKusick, VA
    Zinder, N
    Levine, AJ
    Roberts, RJ
    Simon, M
    Slayman, C
    Hunkapiller, M
    Bolanos, R
    Delcher, A
    Dew, I
    Fasulo, D
    Flanigan, M
    Florea, L
    Halpern, A
    Hannenhalli, S
    Kravitz, S
    Levy, S
    Mobarry, C
    Reinert, K
    Remington, K
    Abu-Threideh, J
    Beasley, E
    [J]. SCIENCE, 2001, 291 (5507) : 1304 - +
  • [27] Genome-wide association analysis identifies 20 loci that influence adult height
    Weedon, Michael N.
    Lango, Hana
    Lindgren, Cecilia M.
    Wallace, Chris
    Evans, David M.
    Mangino, Massimo
    Freathy, Rachel M.
    Perry, John R. B.
    Stevens, Suzanne
    Hall, Alistair S.
    Samani, Nilesh J.
    Shields, Beverly
    Prokopenko, Inga
    Farrall, Martin
    Dominiczak, Anna
    Johnson, Toby
    Bergmann, Sven
    Beckmann, Jacques S.
    Vollenweider, Peter
    Waterworth, Dawn M.
    Mooser, Vincent
    Palmer, Colin N. A.
    Morris, Andrew D.
    Ouwehand, Willem H.
    Caulfield, Mark
    Munroe, Patricia B.
    Hattersley, Andrew T.
    McCarthy, Mark I.
    Frayling, Timothy M.
    [J]. NATURE GENETICS, 2008, 40 (05) : 575 - 583
  • [28] Prediction of individual genetic risk to disease from genome-wide association studies
    Wray, Naomi R.
    Goddard, Michael E.
    Visscher, Peter M.
    [J]. GENOME RESEARCH, 2007, 17 (10) : 1520 - 1528
  • [29] Xu SZ, 2003, GENETICS, V163, P789
  • [30] Bayesian LASSO for quantitative trait loci mapping
    Yi, Nengjun
    Xu, Shizhong
    [J]. GENETICS, 2008, 179 (02) : 1045 - 1055