Pseudocapacitive oxide materials for high-rate electrochemical energy storage

被引:4574
作者
Augustyn, Veronica [1 ]
Simon, Patrice [2 ,3 ]
Dunn, Bruce [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Toulouse 3, CIRIMAT UMR CNRS 5085, Dept Mat Sci, F-31062 Toulouse, France
[3] FR CNRS 3459, Reseau Stockage Electrochim Energie RS2E, Paris, France
基金
欧洲研究理事会;
关键词
HYDROGEN TITANATE NANOWIRES; VANADIUM-OXIDE; CHARGE-STORAGE; ION INTERCALATION; RUTHENIUM OXIDE; ELECTRODE MATERIAL; LITHIUM INSERTION; CARBON NANOTUBES; NI-FOAM; SUPERCAPACITOR;
D O I
10.1039/c3ee44164d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical energy storage technology is based on devices capable of exhibiting high energy density (batteries) or high power density (electrochemical capacitors). There is a growing need, for current and near-future applications, where both high energy and high power densities are required in the same material. Pseudocapacitance, a faradaic process involving surface or near surface redox reactions, offers a means of achieving high energy density at high charge-discharge rates. Here, we focus on the pseudocapacitive properties of transition metal oxides. First, we introduce pseudocapacitance and describe its electrochemical features. Then, we review the most relevant pseudocapacitive materials in aqueous and non-aqueous electrolytes. The major challenges for pseudocapacitive materials along with a future outlook are detailed at the end.
引用
收藏
页码:1597 / 1614
页数:18
相关论文
共 131 条
[81]   High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors [J].
Naoi, Katsuhiko ;
Ishimoto, Shuichi ;
Isobe, Yusaku ;
Aoyagi, Shintaro .
JOURNAL OF POWER SOURCES, 2010, 195 (18) :6250-6254
[82]   Modeling the Electrochemical Impedance Spectra of Electroactive Pseudocapacitor Materials [J].
Nilson, Robert H. ;
Brumbach, Michael T. ;
Bunker, Bruce C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (06) :A678-A688
[83]   ZERO-STRAIN INSERTION MATERIAL OF LI[LI1/3TI5/3]O-4 FOR RECHARGEABLE LITHIUM CELLS [J].
OHZUKU, T ;
UEDA, A ;
YAMAMOTO, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (05) :1431-1435
[84]   ELECTROCHEMISTRY OF L-NIOBIUM PENTOXIDE IN A LITHIUM NONAQUEOUS CELL [J].
OHZUKU, T ;
SAWAI, K ;
HIRAI, T .
JOURNAL OF POWER SOURCES, 1987, 19 (04) :287-299
[85]   The Study of Activated Carbon/CNT/MoO3 Electrodes for Aqueous Pseudo-Capacitors [J].
Okashy, S. ;
Noked, M. ;
Zimrin, T. ;
Aurbach, D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) :A1489-A1496
[86]   Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode [J].
Okubo, Masashi ;
Hosono, Eiji ;
Kim, Jedeok ;
Enomoto, Masaya ;
Kojima, Norimichi ;
Kudo, Tetsuichi ;
Zhou, Haoshen ;
Honma, Itaru .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (23) :7444-7452
[87]   Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor [J].
Padmanathan, N. ;
Selladurai, S. .
IONICS, 2014, 20 (04) :479-487
[88]   Structure of V2O5•nH2O xerogel solved by the atomic pair distribution function technique [J].
Petkov, V ;
Trikalitis, PN ;
Bozin, ES ;
Billinge, SJL ;
Vogt, T ;
Kanatzidis, MG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (34) :10157-10162
[89]   From the Vanadates to 3d-Metal Oxides Negative Electrodes [J].
Poizot, P. ;
Laruelle, S. ;
Grugeon, S. ;
Dupont, L. ;
Tarascon, J. -M. .
IONICS, 2000, 6 (5-6) :321-330
[90]   Synthesis and characterization of nano- mn O2 for electrochemical supercapacitor studies [J].
Ragupathy, P. ;
Vasan, H.N. ;
Munichandraiah, N. .
Journal of the Electrochemical Society, 2008, 155 (01) :A34-A40