Cross-species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks

被引:113
作者
Deppmann, Christopher D. [1 ]
Alvania, Rebecca S.
Taparowsky, Elizabeth J.
机构
[1] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
[2] Johns Hopkins Univ, Sch Med, Dept Neurosci, Baltimore, MD 21218 USA
关键词
bZIP; dimer; transcription; DNA binding;
D O I
10.1093/molbev/msl022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dimeric basic leucine zipper (bZIP) factors constitute one of the most important classes of enhancer-type transcription factors. In vertebrates, bZIP factors are involved in many cellular processes, including cell survival, learning and memory, cancer progression, lipid metabolism, and a variety of developmental processes. These factors have the ability to homo-dimerize and heterodimerize in a specific and predictable manner, resulting in hundreds of dimers with unique effects on transcription. In recent years, several studies have described dimerization preferences for bZIP factors from different species, including Homo sapiens, Drosophila melanogaster, Arabidopsis thaliana, and Saccharomyces cerevisiae. Here, these findings are summarized as novel, graphical representations of closed, interacting protein networks. These representations combine phylogenetic information, DNA-binding properties, and dimerization preference. Beyond summarizing bZIP dimerization preferences within selected species, we have included annotation for a solitary bZIP factor found in the primitive eukaryote, Giardia lamblia, a possible evolutionary precursor to the complex networks of bZIP factors encoded by other genomes. Finally, we discuss the fundamental similarities and differences between dimerization networks within the context of bZIP factor evolution.
引用
收藏
页码:1480 / 1492
页数:13
相关论文
共 90 条
[1]   A heterodimerizing leucine zipper coiled coil system for examining the specificity of a position interactions: Amino acids I, V, L, N, A, and K [J].
Acharya, A ;
Ruvinov, SB ;
Gal, J ;
Moll, JR ;
Vinson, C .
BIOCHEMISTRY, 2002, 41 (48) :14122-14131
[2]   Structure of the leucine zipper [J].
Alber, Tom .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1992, 2 (02) :205-210
[3]   ERYTHROID TRANSCRIPTION FACTOR NF-E2 IS A HEMATOPOIETIC-SPECIFIC BASIC LEUCINE ZIPPER PROTEIN [J].
ANDREWS, NC ;
ERDJUMENTBROMAGE, H ;
DAVIDSON, MB ;
TEMPST, P ;
ORKIN, SH .
NATURE, 1993, 362 (6422) :722-728
[4]   PHORBOL ESTER INDUCIBLE GENES CONTAIN A COMMON CIS ELEMENT RECOGNIZED BY A TPA-MODULATED TRANS-ACTING FACTOR [J].
ANGEL, P ;
IMAGAWA, M ;
CHIU, R ;
STEIN, B ;
IMBRA, RJ ;
RAHMSDORF, HJ ;
JONAT, C ;
HERRLICH, P ;
KARIN, M .
CELL, 1987, 49 (06) :729-739
[5]   Promoter specificity and biological activity of tethered AP-1 dimers [J].
Bakiri, L ;
Matsuo, K ;
Wisniewska, M ;
Wagner, EF ;
Yaniv, M .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (13) :4952-4964
[6]   INTERACTIONS OF COILED COILS IN TRANSCRIPTION FACTORS - WHERE IS THE SPECIFICITY [J].
BAXEVANIS, AD ;
VINSON, CR .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1993, 3 (02) :278-285
[7]   Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation [J].
Bensmihen, S ;
Giraudat, J ;
Parcy, F .
JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (412) :597-603
[8]   Evolution of eukaryotic transcription:: Insights from the genome of Giardia lamblia [J].
Best, AA ;
Morrison, HG ;
McArthur, AG ;
Sogin, ML ;
Olsen, GJ .
GENOME RESEARCH, 2004, 14 (08) :1537-1547
[9]   The evolution of domain arrangements in proteins and interaction networks [J].
Bornberg-Bauer, E ;
Beaussart, F ;
Kummerfeld, S ;
Teichmann, S ;
Weiner, J .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2005, 62 (04) :435-445
[10]   ABFs, a family of ABA-responsive element binding factors [J].
Choi, HI ;
Hong, JH ;
Ha, JO ;
Kang, JY ;
Kim, SY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1723-1730