Perineuronal nets ensheath fast spiking, parvalbumin-immunoreactive neurons in the medial septum/diagonal band complex

被引:86
作者
Morris, NP [1 ]
Henderson, Z [1 ]
机构
[1] Univ Leeds, Sch Biomed Sci, Leeds LS2 9NQ, W Yorkshire, England
关键词
adaptation; immunofluorescence; intracellular recording; lectin; rat;
D O I
10.1046/j.1460-9568.2000.00970.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Perineuronal nets, composed of extracellular matrix material, have previously been associated with parvalbumin-immunoreactive neurons in the medial septum/diagonal band (MS/DB) complex of the rat. The aim of this study was to correlate the presence of perineuronal nets with electrophysiological properties and parvalbumin immunoreactivity in MS/DB neurons. Intracellular recordings were made from cells in a brain slice preparation maintained in vitro, and neurons were characterized into four populations: (i) slow-firing neurons, (ii) burst-firing neurons, (iii) fast spiking neurons with narrow action potentials and a small degree of spike frequency adaptation, and (iv) regular spiking neurons with broader action potentials and a high degree of spike frequency adaptation. Following electrophysiological characterization, neurons were filled with biocytin, processed for parvalbumin immunoreactivity and stained for perineuronal nets using Wisteria floribunda lectin. The three substances were viewed with triple fluorescence. Fast spiking, nonadapting neurons, shown previously to contain parvalbumin immunoreactivity, were nearly all ensheathed by perineuronal nets. There was a population of small parvalbumin-immunoreactive neurons which did not possess perineuronal nets, and which were not encountered with the intracellular electrodes. The other three neuron types in the MS/DB did not contain parvalbumin immunoreactivity or perineuronal nets. In keeping with this neurochemical profile for electrophysiologically identified neurons, burst-firing neurons had action potential parameters more similar to those of regular spiking than of fast spiking neurons. We conclude that fast spiking neurons, presumed to be GABAergic septohippocampal projection neurons, are surrounded by supportive structures to enable the high level of neuronal discharge required for producing disinhibition of hippocampal pyramidal neurons.
引用
收藏
页码:828 / 838
页数:11
相关论文
共 83 条
[31]   WHOLE-CELL AND SINGLE-CHANNEL CALCIUM CURRENTS IN GUINEA-PIG BASAL FOREBRAIN NEURONS [J].
GRIFFITH, WH ;
TAYLOR, L ;
DAVIS, MJ .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 71 (06) :2359-2376
[32]   ELECTROPHYSIOLOGY OF ACHE-POSITIVE NEURONS IN BASAL FOREBRAIN SLICES [J].
GRIFFITH, WH ;
MATTHEWS, RT .
NEUROSCIENCE LETTERS, 1986, 71 (02) :169-174
[33]   MEMBRANE-PROPERTIES OF CELL-TYPES WITHIN GUINEA-PIG BASAL FOREBRAIN NUCLEI INVITRO [J].
GRIFFITH, WH .
JOURNAL OF NEUROPHYSIOLOGY, 1988, 59 (05) :1590-1612
[34]   CODISTRIBUTION OF GABA-SYNTHESIZING WITH ACETYLCHOLINE-SYNTHESIZING NEURONS IN THE BASAL FOREBRAIN OF THE RAT [J].
GRITTI, I ;
MAINVILLE, L ;
JONES, BE .
JOURNAL OF COMPARATIVE NEUROLOGY, 1993, 329 (04) :438-457
[35]   INNERVATION OF DIFFERENT PEPTIDE-CONTAINING NEURONS IN THE HIPPOCAMPUS BY GABAERGIC SEPTAL AFFERENTS [J].
GULYAS, AI ;
GORCS, TJ ;
FREUND, TF .
NEUROSCIENCE, 1990, 37 (01) :31-44
[36]  
HARTIG W, 1992, NEUROREPORT, V3, P869
[37]   ALLOCATION OF PERINEURONAL NETS AND PARVALBUMIN-IMMUNOREACTIVITY, CALBINDIN-D-28K-IMMUNOREACTIVITY AND GLUTAMIC-ACID DECARBOXYLASE-IMMUNOREACTIVITY IN THE AMYGDALA OF THE RHESUS-MONKEY [J].
HARTIG, W ;
BRUCKNER, G ;
BRAUER, K ;
SCHMIDT, C ;
BIGL, V .
BRAIN RESEARCH, 1995, 698 (1-2) :265-269
[38]   CHONDROITIN SULFATE PROTEOGLYCAN-IMMUNOREACTIVITY OF LECTIN-LABELED PERINEURONAL NETS AROUND PARVALBUMIN-CONTAINING NEURONS [J].
HARTIG, W ;
BRAUER, K ;
BIGL, V ;
BRUCKNER, G .
BRAIN RESEARCH, 1994, 635 (1-2) :307-311
[39]  
HOUSER CR, 1984, FUNCTIONAL PROPERTIE, P63
[40]  
JAKAB RL, 1995, RAT NERVOUS SYSTEM, V2, P405