Quantum field theory on a cosmological, quantum space-time

被引:97
作者
Ashtekar, Abhay [1 ,2 ]
Kaminski, Wojciech [1 ,2 ,3 ]
Lewandowski, Jerzy [1 ,2 ,3 ]
机构
[1] Inst Gravitat, University Pk, PA 16802 USA
[2] Cosmos & Phys Dept, University Pk, PA 16802 USA
[3] Uniwersytet Warszawski, Inst Fizyki Teoretycznej, PL-00681 Warsaw, Poland
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.79.064030
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In loop quantum cosmology, Friedmann-LeMaitre-Robertson-Walker space-times arise as well-defined approximations to specific quantum geometries. We initiate the development of a quantum theory of test scalar fields on these quantum geometries. Emphasis is on the new conceptual ingredients required in the transition from classical space-time backgrounds to quantum space-times. These include a "relational time" a la Leibniz, the emergence of the Hamiltonian operator of the test field from the quantum constraint equation, and ramifications of the quantum fluctuations of the background geometry on the resulting dynamics. The familiar quantum field theory on classical Friedmann-LeMaitre-Robertson-Walker models arises as a well-defined reduction of this more fundamental theory.
引用
收藏
页数:12
相关论文
共 37 条
[21]   Gauge-invariant perturbations around symmetry-reduced sectors of general relativity: applications to cosmology [J].
Dittrich, Bianca ;
Tambornino, Johannes .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (18) :4543-4585
[22]   Representations of the Weyl Algebra in Quantum Geometry [J].
Fleischhack, Christian .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (01) :67-140
[23]  
GIESEL K, ARXIV07110117
[24]   Physical time and other conceptual issues of quantum gravity on the example of loop quantum cosmology [J].
Kaminski, Wojciech ;
Lewandowski, Jerzy ;
Pawlowski, Tomasz .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (03)
[25]   The flat FRW model in LQC: self-adjointness [J].
Kaminski, Wojciech ;
Lewandowski, Jerzy .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (03)
[26]  
KAY BS, 2006, ENCY MATH PHYS, V4
[27]   Uniqueness of diffeomorphism invariant states on holonomy-flux algebras [J].
Lewandowski, Jerzy ;
Okolow, Andrzej ;
Sahlmann, Hanno ;
Thiemann, Thomas .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (03) :703-733
[28]  
Mukhanov V., 2007, Introduction to Quantum Effects in Gravity, DOI [10.1017/CBO9780511809149, DOI 10.1017/CBO9780511809149]
[29]   QUANTUM-MECHANICS WITHOUT TIME - A MODEL [J].
ROVELLI, C .
PHYSICAL REVIEW D, 1990, 42 (08) :2638-2646
[30]   Loop quantum gravity [J].
Rovelli C. .
Living Reviews in Relativity, 1998, 1 (1)