The relationship between topological characteristics of component vortices and polarization singularities

被引:89
作者
Angelsky, O
Mokhun, A
Mokhun, I
Soskin, M
机构
[1] Chernovtsy Natl Univ, UA-58012 Chernovtsy 12, Ukraine
[2] Natl Acad Sci Ukraine, Inst Phys, UA-03650 Kiev 39, Ukraine
关键词
D O I
10.1016/S0030-4018(02)01479-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown theoretically and experimentally that the total topological charge of optical vortices associated with linearly polarized orthogonal components and positioned on, s-contours bounding some field's area is equal to the doubled total topological index of C-points located in this area. This conclusion is valid also for field regions, which contain areas with different kind of polarization (left- or right-hand) independently on the number and structure of such areas. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 24 条
[1]   Singularities in vectoral fields [J].
Angelsky, O ;
Besaha, R ;
Mokhun, A ;
Mokhun, I ;
Sopin, M ;
Soskin, M ;
Vasnetsov, M .
FOURTH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 1999, 3904 :40-54
[2]  
ANGELSKY OV, 2000, P SOC PHOTO-OPT INS, V4403, P116
[3]   WAVE-FRONT DISLOCATIONS - TOPOLOGICAL LIMITATIONS FOR ADAPTIVE SYSTEMS WITH PHASE CONJUGATION [J].
BARANOVA, NB ;
MAMAEV, AV ;
PILIPETSKY, NF ;
SHKUNOV, VV ;
ZELDOVICH, BY .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1983, 73 (05) :525-528
[4]   Polarization singularities in isotropic random vector waves [J].
Berry, MV ;
Dennis, MR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2005) :141-155
[5]  
BERRYM, 1981, PHYSICS DEFECTS, P453
[6]  
Born M., 1987, Principles of Optics
[7]   OPTICAL DISLOCATION NETWORKS IN HIGHLY RANDOM-MEDIA [J].
FREUND, I ;
SHVARTSMAN, N ;
FREILIKHER, V .
OPTICS COMMUNICATIONS, 1993, 101 (3-4) :247-264
[8]   WAVE-FIELD PHASE SINGULARITIES - THE SIGN PRINCIPLE [J].
FREUND, I ;
SHVARTSMAN, N .
PHYSICAL REVIEW A, 1994, 50 (06) :5164-5172
[9]  
FREUND I, UNPUB OPT LETT
[10]  
FREUND I, IN PRESS OPT COMMUN