This study reports on the development and application of a fish-specific estrogen-responsive reporter gene assay. The assay is based on the rainbow trout (Oncorhynchus mykiss) gonad cell line RTG-2 in which an acute estrogenic response is created by cotransfecting cultures with an expression vector containing rainbow trout estrogen receptor a complementary DNA (rtERalpha cDNA) in the presence of an estrogen-dependent reporter plasmid and an estrogen receptor (ER) agonist. In a further approach, RTG-2 cells were stably transfected with the rtERalpha cDNA expression vector, and clones responsive to 17beta-estradiol (E-2) Were selected. The estrogenic activity of E2, 17alpha-ethinylestradiol, 4-nonylphenol, nonylphenoxy acetic acid, 4-tert-octylphenol, bisphenol A, o,p'-DDT, p,p'-DDT, o,p'-2,2-bis(chlorophenyl)-1,1-dichloroethylene (o,p'-DDE), p,p'-DDE, o,p'-2,2-bis(chlorophenyl)-1,1-dichloroethane (o,p'-DDD), p,p'-DDD, and p,p'-2,2-bis(chlorophenyl)acetic acid (p,p'-DDA) was assessed at increasing concentrations. All compounds except o,p'-DDT, p,p'-DDE, and p,p'-DDA showed logistic dose-response curves, which allowed the calculation of lowest-observed-effect concentrations and the concentrations at which half-maximal reporter gene activities were reached. To check whether estrogen-responsive RTG-2 cells may be used to detect the estrogenic activity of environmental samples, an extract from a sewage treatment plant (STP) effluent was assessed and found to have estrogenic activity corresponding to the transcriptional activity elicited by 0.05 nM of E-2. Dose-response curves of nonylphenol, octylphenol, bisphenol A, and o,p'-DDD revealed that the RTG-2 reporter gene assay is more sensitive for these compounds when compared to transfection systems recombinant for mammalian ERs. These differences may have an effect on the calculation of E-2 equivalents when estrogenic mixtures of known constitution, or environmental samples, such as STP effluents, are assessed.