Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells

被引:207
作者
Tamama, Kenichi
Fan, Vivian H.
Griffith, Linda G.
Blair, Harry C.
Wells, Alan
机构
[1] Univ Pittsburgh, Dept Pathol, Pittsburgh, PA 15261 USA
[2] MIT, Div Biol Sci, Cambridge, MA 02139 USA
[3] Harvard Univ, Sch Dent Med, Boston, MA 02115 USA
关键词
mesenchymal stem cells; mitogen-activated protein kinase; phospholipase C; signal transduction; regenerative medicine; adipogenesis; osteogenesis; ex vivo expansion;
D O I
10.1634/stemcells.2005-0176
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Bone marrow mesenchymal stem cells (BMMSCs) are pluripotent cells capable of differentiating into several cell types and are thus an attractive cell source for connective tissue engineering. A challenge in such a use is expansion and directed seeding in vitro, requiring proliferation and survival, and directed migration, respectively, prior to functional differentiation. The epidermal growth factor (EGF) receptor (EGFR) is the-prototypal growth factor receptor and elicits these responses from a wide variety of stromal, epithelial, and endothelial cells. Ligands for this receptor are appealing for use in tissue engineering because they are relatively resistant to biological extremes and amenable to high-volume production. Therefore, we determined whether an EGFR ligand, EGF, could be used for ex vivo expansion of BMMSCs. EGF stimulated motility in rat and immortalized human BMMSCs. EGF-induced proliferation was observed in immortalized human BMMSCs but was not apparent in rat BMMSCs under our experimental conditions. EGF did not, however, rescue either type of BMMSC from apoptosis due to lack of serum. During our examination of key signaling intermediaries, EGF caused robust phosphorylation of extracellular signal-regulated protein kinase (ERK) and protein kinase B/akt (AKT) but only minimal phosphorylation of EGFR and phospholipase C-gamma in rat BMMSCs, whereas in the human BMMSCs these intermediaries were all strongly activated. EGF also induced robust ERK activation in primary porcine mesenchymal stem cells. EGF pretreatment or cotreatment did not interfere with secondarily induced differentiation of either type of BMMSC into adipogenic or osteogenic lineages. Platelet-derived growth factor (PDGF) effects were similar to but not additive with those elicited by EGF, with some quantitative differences; however, PDGF did interfere with the differentiation of these BMMSCs. These findings suggest that EGFR ligands could be used for ex vivo expansion and direction of BMMSCs.
引用
收藏
页码:686 / 695
页数:10
相关论文
共 51 条
[1]  
ANTOSZ ME, 1987, J BONE MINER RES, V2, P385
[2]  
BACHMEIER M, 1995, EUR J CELL BIOL, V68, P323
[3]   Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy [J].
Baksh, D ;
Song, L ;
Tuan, RS .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2004, 8 (03) :301-316
[4]   Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion [J].
Baxter, MA ;
Wynn, RF ;
Jowitt, SN ;
Wraith, JE ;
Fairbairn, LJ ;
Bellantuono, I .
STEM CELLS, 2004, 22 (05) :675-682
[5]   Bone marrow stromal stem cells: Nature, biology, and potential applications [J].
Bianco, P ;
Riminucci, M ;
Gronthos, S ;
Robey, PG .
STEM CELLS, 2001, 19 (03) :180-192
[6]   Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells [J].
Boland, GM ;
Perkins, G ;
Hall, DJ ;
Tuan, RS .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2004, 93 (06) :1210-1230
[7]   EFFECT OF HORMONES AND GROWTH-FACTORS ON ALKALINE-PHOSPHATASE ACTIVITY AND COLLAGEN-SYNTHESIS IN CULTURED RAT CALVARIAE [J].
CANALIS, E .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1983, 32 (01) :14-20
[8]   MESENCHYMAL STEM-CELLS [J].
CAPLAN, AI .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1991, 9 (05) :641-650
[9]   Mitogenic signaling from the EGF receptor is attenuated by a phospholipase C-gamma/protein kinase C feedback mechanism. [J].
Chen, P ;
Xie, H ;
Wells, A .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (06) :871-881
[10]   EPIDERMAL GROWTH-FACTOR RECEPTOR-MEDIATED CELL MOTILITY - PHOSPHOLIPASE-C ACTIVITY IS REQUIRED, BUT MITOGEN-ACTIVATED PROTEIN-KINASE ACTIVITY IS NOT SUFFICIENT FOR INDUCED CELL-MOVEMENT [J].
CHEN, P ;
XIE, H ;
SEKAR, MC ;
GUPTA, K ;
WELLS, A .
JOURNAL OF CELL BIOLOGY, 1994, 127 (03) :847-857