Simulation of the growth dynamics of amorphous and microcrystalline silicon

被引:11
作者
Bailat, J [1 ]
Vallat-Sauvain, E [1 ]
Vallat, A [1 ]
Shah, A [1 ]
机构
[1] Univ Neuchatel, Inst Microtech, CH-2000 Neuchatel, Switzerland
关键词
D O I
10.1016/j.jnoncrysol.2004.02.016
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The qualitative description of the major microstructure characteristics of microcrystalline silicon is achieved through a three-dimensional discrete dynamical growth model. The model is based on three fundamental processes that determine surface morphology: (1) random deposition of particles, (2) local relaxation and (3) desorption. In this model, the incoming particle reaching the growing surface takes on a state variable representing a particular way of being incorporated into the material. The state variable is attributed according to a simple selection rule that is characteristic of the model. This model reproduces most of the features of the complex microstructure of microcrystalline silicon: transition from amorphous to crystalline phase, conical shape of the crystalline domains, crystalline fraction evolution with respect to the layer thickness and roughness evolution versus layer thickness. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 36
页数:5
相关论文
共 9 条
[1]   Microstructure and open-circuit voltage of n-i-p microcrystalline silicon solar cells [J].
Bailat, J ;
Vallat-Sauvain, E ;
Feitknecht, L ;
Droz, C ;
Shah, A .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (09) :5727-5732
[2]  
BARABASI AL, 1995, FRACTAL CONCEPTS CRY
[3]  
BENEDICT J, 1992, MATER RES SOC SYMP P, V254, P121, DOI 10.1557/PROC-254-121
[4]   Evolution of microstructure and phase in amorphous, protocrystalline, and micro crystalline silicon studied by real time spectroscopic ellipsometry [J].
Collins, RW ;
Ferlauto, AS ;
Ferreira, GM ;
Chen, C ;
Koh, J ;
Koval, RJ ;
Lee, Y ;
Pearce, JM ;
Wronski, CR .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 78 (1-4) :143-180
[5]   Role of grains in protocrystalline silicon layers grown at very low substrate temperatures and studied by atomic force microscopy [J].
Mates, T ;
Fejfar, A ;
Drbohlav, I ;
Rezek, B ;
Fojtík, P ;
Luterová, K ;
Kocka, J ;
Koch, C ;
Schubert, MB ;
Ito, M ;
Ro, K ;
Uyama, H .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2002, 299 :767-771
[6]   Growth mechanism of microcrystalline silicon obtained from reactive plasmas [J].
Matsuda, A .
THIN SOLID FILMS, 1999, 337 (1-2) :1-6
[7]   Efficiency enhancement of amorphous silicon p-i-n solar cells by LP-CVD ZnO [J].
Meier, J ;
Kroll, U ;
Dubail, S ;
Golay, S ;
Fay, S ;
Dubail, J ;
Shah, A .
CONFERENCE RECORD OF THE TWENTY-EIGHTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 2000, 2000, :746-749
[8]   Material and solar cell research in microcrystalline silicon [J].
Shah, A ;
Meier, J ;
Vallat-Sauvain, E ;
Wyrsch, N ;
Kroll, U ;
Droz, C ;
Graf, U .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 78 (1-4) :469-491
[9]  
TSAI CC, 1988, AMORPHOUS SOLIDS REL