Nucleation and Growth Mechanisms of an Electrodeposited Manganese Oxide Oxygen Evolution Catalyst

被引:78
作者
Huynh, Michael [1 ,2 ]
Bediako, D. Kwabena [1 ]
Liu, Yi [1 ]
Nocera, Daniel G. [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
SIZE-SELECTIVE ELECTRODEPOSITION; MESOSCALE METAL PARTICLES; WATER-OXIDATION; ELECTROCHEMICAL NUCLEATION; DIOXIDE; ELECTROCATALYSTS; REDUCTION; CHEMISTRY; KINETICS; COPPER;
D O I
10.1021/jp501768n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the mechanisms of nucleation and steady-state growth of a manganese oxide catalyst (MnOx) electrodeposited from Mn2+ solutions in a weakly basic electrolyte. Early catalyst growth was probed through chronoamperometry transients, which were fit to reveal a progressive nucleation mechanism for initial catalyst formation. Time-dependent atomic force microscopy snapshots of the electrode surface reveal a rapid increase in nucleus size together with a sluggish rise in coverage, which is also characteristic of progressive nucleation. Electrochemical kinetic studies of the catalyst growth yield a Tafel slope of approximately 2.3 x RT/2F and a rate law consisting of a second-order and inverse fourth-order dependence on [Mn2+] and proton activity, respectively. These results are consistent with a deposition mechanism involving rate-limiting disproportionation of aqueous Mn3+, resolving a longstanding ambiguity surrounding the deposition of manganese oxides under nonacidic conditions.
引用
收藏
页码:17142 / 17152
页数:11
相关论文
共 60 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Why did nature choose manganese to make oxygen? [J].
Armstrong, Fraser A. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1494) :1263-1270
[3]   An electrochemical comparison of manganese dioxide microparticles versus α and β manganese dioxide nanorods:: mechanistic and electrocatalytic behaviour [J].
Batchelor-McAuley, Christopher ;
Shao, Lidong ;
Wildgoose, Gregory G. ;
Green, Malcolm L. H. ;
Compton, Richard G. .
NEW JOURNAL OF CHEMISTRY, 2008, 32 (07) :1195-1203
[4]   Proton-Electron Transport and Transfer in Electrocatalytic Films. Application to a Cobalt-Based O2-Evolution Catalyst [J].
Bediako, D. Kwabena ;
Costentin, Cyrille ;
Jones, Evan C. ;
Nocera, Daniel G. ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (28) :10492-10502
[5]  
Bélanger D, 2008, ELECTROCHEM SOC INTE, V17, P49
[6]   An RDE and RRDE study into the electrodeposition of manganese dioxide [J].
Clarke, Colin J. ;
Browning, Gregory J. ;
Donne, Scott W. .
ELECTROCHIMICA ACTA, 2006, 51 (26) :5773-5784
[7]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[8]   SOME ASPECTS OF CHEMISTRY OF MANGANESE(3) IN AQUEOUS SOLUTION [J].
DAVIES, G .
COORDINATION CHEMISTRY REVIEWS, 1969, 4 (02) :199-&
[9]   METAL-OXIDE CATHODE MATERIALS FOR ELECTROCHEMICAL ENERGY-STORAGE - A REVIEW [J].
DESILVESTRO, J ;
HAAS, O .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (01) :C5-C22
[10]   Highly active screen-printed electrocatalysts for water oxidation based on β-manganese oxide [J].
Fekete, Monika ;
Hocking, Rosalie K. ;
Chang, Shery L. Y. ;
Italiano, Cristina ;
Patti, Antonio F. ;
Arena, Francesco ;
Spiccia, Leone .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (07) :2222-2232