Fermionic quantum computation

被引:701
作者
Bravyi, SB
Kitaev, AY
机构
[1] LD Landau Theoret Phys Inst, Moscow 117940, Russia
[2] Microsoft Res, Redmond, WA 98052 USA
关键词
D O I
10.1006/aphy.2002.6254
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a model of quantum computation with local fermionic modes (LFMs)-sites which can be either empty or occupied by a fermion. With the standard correspondence between the Foch space of m LFMs and the Hilbert space of m qubits, simulation of one fermionic gate takes O (m) qubit gates and vice versa. We show that using different encodings, the simulation cost can be reduced to O (log m) and a constant. respectively, Nearest neighbors fermionic gates on a graph of bounded degree can be simulated at a constant cost. A universal set of fermionic gates is found, We also study computation with Majorana fermions which are basically halves of LFMs. Some connection to qubit quantum codes is made. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:210 / 226
页数:17
相关论文
共 15 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]  
Aharanov D., 1997, P 30 ANN ACM S THEOR, P20
[3]  
BOYKIN P, QUANTPH9906054
[4]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[5]   QUANTUM COMPUTATIONAL NETWORKS [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 425 (1868) :73-90
[6]  
Feynman R. P., 1985, Optics News, V11, P11, DOI [DOI 10.1364/ON.11.2.000011, 10.1364/ON.11.2.000011]
[7]  
Kitaev A, UNPUB
[8]  
KITAEV A, 2001, USEPKHI FIZICHESKI S, P131
[9]   Quantum computations: algorithms and error correction [J].
Kitaev, AY .
RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (06) :1191-1249
[10]  
KITAEV AY, QUANTPH0001071