Signal transduction by nitric oxide in cellular stress responses

被引:40
作者
Demple, B [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Canc Cell Biol, Boston, MA 02115 USA
关键词
signal transduction; stress responses; nitric oxide;
D O I
10.1023/A:1015933216079
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Nitric oxide (NO) has received wide attention as a biological signaling molecule that uses cyclic GMP as a cellular second messenger. Other work has supported roles for cysteine oxidation or nitrosylation as signaling events. Recent studies in bacteria and mammalian cells now point to the existence of at least two other pathways independent of cGMP. For the E. coli SoxR protein, signaling occurs by nitrosylation of its binuclear iron-sulfur clusters, a reaction that is unprecedented in gene activation. In intact cells, these nitrosylated centers are very rapidly replaced by unmodified iron-sulfur clusters, a result that points to the existence of an active repair pathway for this type of protein damage. Exposure of mammalian cells to NO elicits an adaptive resistance that confers elevated resistance of the cells to higher levels of NO. This resistance in many cell types involves the important defense protein heme oxygenase 1, although the mechanism by which this enzyme mediates NO resistance remains unknown. Induction of heme oxygenase in some cell types occurs through the stabilization of its mRNA. NO-induced stabilization of mRNA is mediated by pre-existing proteins and points to the existence of an important new signaling pathway that counteracts the damage and stress exerted by this free radical.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 45 条
[1]  
Beckman JS, 1996, AM J PHYSIOL-CELL PH, V271, pC1424
[2]   Adaptive resistance to nitric oxide in motor neurons [J].
Bishop, A ;
Marquis, JC ;
Cashman, NR ;
Demple, B .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 26 (7-8) :978-986
[3]   Nitric oxide-inducible expression of heme oxygenase-1 in human cells - Translation-independent stabilization of the mRNA and evidence for direct action of nitric oxide [J].
Bouton, C ;
Demple, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32688-32693
[4]   CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE [J].
BREDT, DS ;
HWANG, PM ;
GLATT, CE ;
LOWENSTEIN, C ;
REED, RR ;
SNYDER, SH .
NATURE, 1991, 351 (6329) :714-718
[5]   Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis [J].
Brouard, S ;
Otterbein, LE ;
Anrather, J ;
Tobiasch, E ;
Bach, FH ;
Choi, AMK ;
Soares, MP .
JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 192 (07) :1015-1025
[6]   Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress [J].
Carmel-Harel, O ;
Storz, G .
ANNUAL REVIEW OF MICROBIOLOGY, 2000, 54 :439-461
[7]  
DEMPLE B, 1994, ANNU REV BIOCHEM, V63, P915, DOI 10.1146/annurev.biochem.63.1.915
[8]  
DEMPLE B, 1997, METHODS COMPANION ME, P265
[9]   Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator [J].
Ding, HG ;
Demple, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5146-5150
[10]   In vivo kinetics of a redox-regulated transcriptional switch [J].
Ding, HG ;
Demple, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (16) :8445-8449