Enhancement of Carotenoid Biosynthesis in Transplastomic Tomatoes by Induced Lycopene-to-Provitamin A Conversion

被引:132
作者
Apel, Wiebke [1 ]
Bock, Ralph [1 ]
机构
[1] Max Planck Inst Mol Pflanzenphysiol, D-14476 Potsdam, Germany
关键词
BETA-CAROTENE; MESSENGER-RNA; PLANTS; EXPRESSION; FRUIT; TOBACCO; TRANSFORMATION; PLASTIDS; PATHWAY; PROTEIN;
D O I
10.1104/pp.109.140533
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Carotenoids are essential pigments of the photosynthetic apparatus and an indispensable component of the human diet. In addition to being potent antioxidants, they also provide the vitamin A precursor beta-carotene. In tomato (Solanum lycopersicum) fruits, carotenoids accumulate in specialized plastids, the chromoplasts. How the carotenoid biosynthetic pathway is regulated and what limits total carotenoid accumulation in fruit chromoplasts is not well understood. Here, we have introduced the lycopene beta-cyclase genes from the eubacterium Erwinia herbicola and the higher plant daffodil (Narcissus pseudonarcissus) into the tomato plastid genome. While expression of the bacterial enzyme did not strongly alter carotenoid composition, expression of the plant enzyme efficiently converted lycopene, the major storage carotenoid of the tomato fruit, into provitamin A (beta-carotene). In green leaves of the transplastomic tomato plants, more lycopene was channeled into the beta-branch of carotenoid biosynthesis, resulting in increased accumulation of xanthophyll cycle pigments and correspondingly reduced accumulation of the alpha-branch xanthophyll lutein. In fruits, most of the lycopene was converted into beta-carotene with provitamin A levels reaching 1 mg per g dry weight. Unexpectedly, transplastomic tomatoes also showed a > 50% increase in total carotenoid accumulation, indicating that lycopene beta-cyclase expression enhanced the flux through the pathway in chromoplasts. Our results provide new insights into the regulation of carotenoid biosynthesis and demonstrate the potential of plastids genome engineering for the nutritional enhancement of food crops.
引用
收藏
页码:59 / 66
页数:8
相关论文
共 37 条
  • [1] Al-Babili S., 1996, PLANT PHYSIOL, V112, P1398
  • [2] Genetics of eubacterial carotenoid biosynthesis: A colorful tale
    Armstrong, GA
    [J]. ANNUAL REVIEW OF MICROBIOLOGY, 1997, 51 : 629 - 659
  • [3] Transgenic plastids in basic research and plant biotechnology
    Bock, R
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (03) : 425 - 438
  • [4] Regulation of carotenoid formation during tomato fruit ripening and development
    Bramley, PM
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (377) : 2107 - 2113
  • [5] GENOMIC SEQUENCING
    CHURCH, GM
    GILBERT, W
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07): : 1991 - 1995
  • [6] Collins AR, 1999, BIOESSAYS, V21, P238, DOI 10.1002/(SICI)1521-1878(199903)21:3<238::AID-BIES8>3.0.CO
  • [7] 2-3
  • [8] Genes and enzymes of carotenoid biosynthesis in plants
    Cunningham, FX
    Gantt, E
    [J]. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 : 557 - 583
  • [9] Metabolic engineering of xanthophyll content in tomato fruits
    Dharmapuri, S
    Rosati, C
    Pallara, P
    Aquilani, R
    Bouvier, F
    Camara, B
    Giuliano, G
    [J]. FEBS LETTERS, 2002, 519 (1-3) : 30 - 34
  • [10] Doyle JJ., 1990, Focus, V12, P13