Bayesian inference for normal multiple-trait individual-tree models with missing records via full conjugate Gibbs

被引:15
作者
Cappa, Eduardo P. [1 ]
Cantet, Rodolfo J. C. [1 ]
机构
[1] Univ Buenos Aires, Dept Anim Prod, CONICET, Buenos Aires, DF, Argentina
关键词
D O I
10.1139/X06-024
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
In forest genetics, restricted maximum likelihood (REML) estimation of (co)variance components from normal multiple-trait individual-tree models is affected by the absence of observations in any trait and individual. Missing records affect the form of the distribution of REML estimates of genetics parameters, or of functions of them, and the estimating equations are computationally involved when several traits are analysed. An alternative to REML estimation is a fully Bayesian approach through Markov chain Monte Carlo. The present research describes the use of the full conjugate Gibbs algorithm proposed by Cantet et al. (R.J.C. Cantet, A.N. Birchmeier, and J.P. Steibel. 2004. Genet. Sel. Evol. 36: 49-64) to estimate (co)variance components in multiple-trait individual-tree models. This algorithm converges faster to the marginal posterior densities of the parameters than regular data augmentation from multivariate normal data with missing records. An expression to calculate the deviance information criterion for the selection of linear parameters in normal multiple-trait models is also given. The developments are illustrated by means of data from different crosses of two species of Pinus.
引用
收藏
页码:1276 / 1285
页数:10
相关论文
共 34 条
[1]  
APIOLAZA LA, 1999, FOR GENET, V9, P79
[2]  
BALOCCHI CE, 1993, FOREST SCI, V39, P231
[3]  
BORRALHO NMG, 1995, EUCALYPT PLANTATIONS, P141
[4]   Full conjugate analysis of normal multiple traits with missing records using a generalized inverted Wishart distribution [J].
Cantet, RJC ;
Birchmeier, AN ;
Steibel, JP .
GENETICS SELECTION EVOLUTION, 2004, 36 (01) :49-64
[5]  
Cardoso FF, 2004, J ANIM SCI, V82, P1589
[6]   THE ASYMPTOTIC-DISTRIBUTION OF REML ESTIMATORS [J].
CRESSIE, N ;
LAHIRI, SN .
JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 45 (02) :217-233
[7]   APPLICATION OF APPROXIMATE VARIANCES OF VARIANCE-COMPONENTS AND THEIR RATIOS IN GENETIC TESTS [J].
DIETERS, MJ ;
WHITE, TL ;
LITTELL, RC ;
HEDGE, GR .
THEORETICAL AND APPLIED GENETICS, 1995, 91 (01) :15-24
[8]   Conjugate analysis of multivariate normal data with incomplete observations [J].
Dominici, F ;
Parmigiani, G ;
Clyde, M .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (03) :533-550
[9]  
Dungey H. S., 2000, Forest Genetics, V7, P21
[10]  
Golub GH, 2013, Matrix Computations, V4