Conjugate analysis of multivariate normal data with incomplete observations

被引:10
作者
Dominici, F [1 ]
Parmigiani, G [1 ]
Clyde, M [1 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2000年 / 28卷 / 03期
关键词
conjugate analysis; data missing at random; Gibbs sampling; importance sampling; inverse Wishart distribution; multivariate normal distribution;
D O I
10.2307/3315963
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors discuss prior distributions that are conjugate to the multivariate normal likelihood when some of the observations are incomplete. They present a general class of priors for incorporating information about unidentified parameters in the covariance matrix. They analyze the special case of monotone patterns of missing data, providing an explicit recursive form for the posterior distribution resulting from a conjugate prior distribution. They develop an importance sampling and a Gibbs sampling approach to sample from a general posterior distribution and compare the two methods.
引用
收藏
页码:533 / 550
页数:18
相关论文
共 29 条
[1]  
Anderson T., 1984, INTRO MULTIVARIATE S
[3]  
ANDO A, 1965, J AM STAT ASSOC, V60, P347
[4]  
[Anonymous], 1995, CODA CONVERGENCE DIA
[5]  
Brown P.J., 1994, ASPECTS UNCERTAINTY, P77
[6]   INFERENCE FOR NONCONJUGATE BAYESIAN MODELS USING THE GIBBS SAMPLER [J].
CARLIN, BP ;
POLSON, NG .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1991, 19 (04) :399-405
[7]  
CHEN FF, 1986, STUDIES BAYESIAN ECO, V6, P355
[8]   CONJUGATE PRIORS FOR EXPONENTIAL FAMILIES [J].
DIACONIS, P ;
YLVISAKER, D .
ANNALS OF STATISTICS, 1979, 7 (02) :269-281
[9]   ILLUSTRATION OF BAYESIAN-INFERENCE IN NORMAL DATA MODELS USING GIBBS SAMPLING [J].
GELFAND, AE ;
HILLS, SE ;
RACINEPOON, A ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (412) :972-985
[10]  
HANNULA R, 1976, THESIS CARNEGIE MELL