Post-transcriptional regulation of soluble guanylyl cyclase expression in rat aorta

被引:45
作者
Klöss, S
Furneaux, H
Mülsch, A
机构
[1] Goethe Univ Frankfurt, Inst Kardiovaskulare Physiol, D-60590 Frankfurt, Germany
[2] Univ Connecticut, Sch Med, Dept Biochem, Farmington, CT 06030 USA
关键词
D O I
10.1074/jbc.M206453200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We investigated the molecular mechanism of cyclic GMP-induced down-regulation of soluble guanylyl cyclase expression in rat aorta. 3-(5'-Hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), an allosteric activator of this enzyme, decreased the expression of soluble guanylyl cyclase alpha(1) subunit mRNA and protein. This effect was blocked by the enzyme inhibitor 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b-1,,4)oxazin-1-one (NS2028) and by actinomycin D. Guanylyl cyclase alpha(1) mRNA-degrading activity was increased in protein extracts from YC-1-exposed aorta and was attenuated by pretreatment with actinomycin D and NS2028. Gelshift and supershift analyses using an adenylate-uridylate-rich ribonucleotide from the 3'-untranslated region of the alpha(1) mRNA and a monoclonal antibody directed against the mRNA-stabilizing protein HuR revealed HuR mRNA binding activity in aortic extracts, which was absent in extracts from YC-1-stimulated aortas. YC-1 decreased the expression of HuR, and this decrease was prevented by NS2028. Similarly, down-regulation of HuR by RNA interference in cultured it-at aortic smooth muscle cells decreased alpha(1) mRNA and protein expression. We conclude that HuR protects the guanylyl cyclase alpha(1) mRNA by binding to the W-untranslated region. Activation of guanylyl cyclase decreases HuR expression, inducing a rapid degradation of guanylyl cyclase alpha(1) mRNA and lowering alpha(1) subunit expression as a negative feedback response.
引用
收藏
页码:2377 / 2383
页数:7
相关论文
共 27 条
[1]   Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression -: Role of enhanced vascular superoxide production [J].
Bauersachs, J ;
Bouloumié, A ;
Fraccarollo, D ;
Hu, K ;
Busse, R ;
Ertl, G .
CIRCULATION, 1999, 100 (03) :292-298
[2]   HuR and mRNA stability [J].
Brennan, CM ;
Steitz, JA .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (02) :266-277
[3]   AU-RICH ELEMENTS - CHARACTERIZATION AND IMPORTANCE IN MESSENGER-RNA DEGRADATION [J].
CHEN, CYA ;
SHYU, AB .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (11) :465-470
[4]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[5]   Analysis of gene function in somatic mammalian cells using small interfering RNAs [J].
Elbashir, SM ;
Harborth, J ;
Weber, K ;
Tuschl, T .
METHODS, 2002, 26 (02) :199-213
[6]   Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs [J].
Fan, XHC ;
Steitz, JA .
EMBO JOURNAL, 1998, 17 (12) :3448-3460
[7]   Nitric oxide decreases stability of mRNAs encoding soluble guanylate cyclase subunits in rat pulmonary artery smooth muscle cells [J].
Filippov, G ;
Bloch, DB ;
Bloch, KD .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (04) :942-948
[8]  
Hartsfield CL, 1997, AM J PHYSIOL-LUNG C, V273, pL980
[9]   Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress [J].
Hentze, MW ;
Kuhn, LC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8175-8182
[10]   Analysis of the 5′ end of the mouse Elavl1 (mHuA) gene reveals a transcriptional regulatory element and evidence for conserved genomic organization [J].
King, PH ;
Fuller, JJ ;
Nabors, LB ;
Detloff, PJ .
GENE, 2000, 242 (1-2) :125-131