The common exterior of convex polygons in the plane

被引:15
作者
Aronov, B
Sharir, M
机构
[1] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[2] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[3] POLYTECH INST NEW YORK,DEPT COMP SCI,BROOKLYN,NY 11201
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1997年 / 8卷 / 03期
基金
美国国家科学基金会;
关键词
convex polygons; arrangements; common exterior; combinatorial complexity;
D O I
10.1016/S0925-7721(96)00004-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish several combinatorial bounds on the complexity (number of vertices and edges) of the complement of the union (also known as the common exterior) of k convex polygons in the plane, with a total of n edges. We show: (1) The maximum complexity of the entire common exterior is Theta(n alpha(k) + k(2)).(2) (2) The maximum complexity of a single cell of the common exterior is Theta(n alpha(k)). (3) The complexity of m distinct cells in the common exterior is O(m(2/3)k(2/3) log(1/3)(k(2)/m) + n log k) and can be Omega(m(2/3)k(2/3) + n alpha(lc)) in the worst case. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 19 条
[1]   AN OPTIMAL ALGORITHM FOR THE BOUNDARY OF A CELL IN A UNION OF RAYS [J].
ALEVIZOS, P ;
BOISSONNAT, JD ;
PREPARATA, FP .
ALGORITHMICA, 1990, 5 (04) :573-590
[2]   THE NUMBER OF EDGES OF MANY FACES IN A LINE SEGMENT ARRANGEMENT [J].
ARONOV, B ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M .
COMBINATORICA, 1992, 12 (03) :261-274
[3]  
ARONOV B, 1993, AN S FDN CO, P518
[4]  
ARONOV B, IN PRESS SIAM J COMP
[5]  
ARONOV B, 1992, UNPUB ARRANGEMENTS P
[6]   COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES [J].
CLARKSON, KL ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :99-160
[7]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[8]   ON THE MAXIMAL NUMBER OF EDGES OF MANY FACES IN AN ARRANGEMENT [J].
EDELSBRUNNER, H ;
WELZL, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (02) :159-166
[9]   THE COMPLEXITY AND CONSTRUCTION OF MANY FACES IN ARRANGEMENTS OF LINES AND OF SEGMENTS [J].
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :161-196
[10]  
Edelsbrunner H., 1987, ALGORITHMS COMBINATO