THE NUMBER OF EDGES OF MANY FACES IN A LINE SEGMENT ARRANGEMENT

被引:15
作者
ARONOV, B
EDELSBRUNNER, H
GUIBAS, LJ
SHARIR, M
机构
[1] RUTGERS STATE UNIV,DIMACS CTR,PISCATAWAY,NJ 08855
[2] UNIV ILLINOIS,DEPT COMP SCI,URBANA,IL 61801
[3] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
[4] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[5] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[6] DEC SYST RES CTR,PALO ALTO,CA 94301
关键词
D O I
10.1007/BF01285815
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the maximum number of edges bounding m faces in an arrangement of n line segments in the plane is O(m2/3n2/3 + nalpha(n) + n log m). This improves a previous upper bound of Edelsbrunner et al. [5] and almost matches the best known lower bound which is OMEGA(m2/3n2/3 + nalpha(n)). In addition, we show that the number of edges bounding any m faces in an arrangement of n line segments with a total of t intersecting pairs is O(m2/3t1/3 + nalpha(t/n) + n min{log m, log t/n}), almost matching the lower bound of OMEGA(m2/3t1/3 + nalpha(t/n)) demonstrated in this paper.
引用
收藏
页码:261 / 274
页数:14
相关论文
共 11 条
[1]  
ARONOV B, 1990, COMBINATORICA, V10, P27
[2]   COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES [J].
CLARKSON, KL ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :99-160
[3]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[4]   ON THE MAXIMAL NUMBER OF EDGES OF MANY FACES IN AN ARRANGEMENT [J].
EDELSBRUNNER, H ;
WELZL, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (02) :159-166
[5]   CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES WITH APPLICATIONS [J].
EDELSBRUNNER, H ;
OROURKE, J ;
SEIDEL, R .
SIAM JOURNAL ON COMPUTING, 1986, 15 (02) :341-363
[6]   THE COMPLEXITY AND CONSTRUCTION OF MANY FACES IN ARRANGEMENTS OF LINES AND OF SEGMENTS [J].
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :161-196
[7]  
EDELSBRUNNER H, IN PRESS SIAM J COMP
[8]   ON THE GENERAL MOTION-PLANNING PROBLEM WITH 2 DEGREES OF FREEDOM [J].
GUIBAS, LJ ;
SHARIR, M ;
SIFRONY, S .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :491-521
[9]   SEPARATING 2 SIMPLE POLYGONS BY A SEQUENCE OF TRANSLATIONS [J].
POLLACK, R ;
SHARIR, M ;
SIFRONY, S .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (02) :123-136
[10]   PLANAR REALIZATIONS OF NONLINEAR DAVENPORT-SCHINZEL SEQUENCES BY SEGMENTS [J].
WIERNIK, A ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (01) :15-47