High-order neural networks and kernel methods for peptide-MHC binding prediction

被引:24
作者
Kuksa, Pavel P. [1 ,2 ,3 ]
Min, Martin Renqiang [3 ]
Dugar, Rishabh [3 ]
Gerstein, Mark [4 ,5 ,6 ]
机构
[1] Univ Penn, Sch Med, Inst Biomed Informat, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[3] NEC Labs Amer, Dept Machine Learning, Princeton, NJ 08540 USA
[4] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06511 USA
[5] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06511 USA
[6] Yale Univ, Dept Comp Sci, New Haven, CT 06511 USA
关键词
CLASS-I;
D O I
10.1093/bioinformatics/btv371
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Effective computational methods for peptide-protein binding prediction can greatly help clinical peptide vaccine search and design. However, previous computational methods fail to capture key nonlinear high-order dependencies between different amino acid positions. As a result, they often produce low-quality rankings of strong binding peptides. To solve this problem, we propose nonlinear high-order machine learning methods including high-order neural networks (HONNs) with possible deep extensions and high-order kernel support vector machines to predict major histocompatibility complex-peptide binding. Results: The proposed high-order methods improve quality of binding predictions over other prediction methods. With the proposed methods, a significant gain of up to 25-40% is observed on the benchmark and reference peptide datasets and tasks. In addition, for the first time, our experiments show that pre-training with high-order semi-restricted Boltzmann machines significantly improves the performance of feed-forward HONNs. Moreover, our experiments show that the proposed shallow HONN outperform the popular pre-trained deep neural network on most tasks, which demonstrates the effectiveness of modelling high-order feature interactions for predicting major histocompatibility complex-peptide binding.
引用
收藏
页码:3600 / 3607
页数:8
相关论文
共 25 条
[1]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[2]   Prediction of promiscuous peptides that bind HLA class I molecules [J].
Brusic, V ;
Petrovsky, N ;
Zhang, GL ;
Bajic, VB .
IMMUNOLOGY AND CELL BIOLOGY, 2002, 80 (03) :280-285
[3]   Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach [J].
Buus, S ;
Lauemoller, SL ;
Worning, P ;
Kesmir, C ;
Frimurer, T ;
Corbet, S ;
Fomsgaard, A ;
Hilden, J ;
Holm, A ;
Brunak, S .
TISSUE ANTIGENS, 2003, 62 (05) :378-384
[4]   Crystal structure of HLA-A*2402 complexed with a telomerase peptide [J].
Cole, DK ;
Rizkallah, PJ ;
Gao, F ;
Watson, NI ;
Boulter, JM ;
Bell, JI ;
Sami, M ;
Gao, GF ;
Jakobsen, BK .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2006, 36 (01) :170-179
[5]   MHC-NP: Predicting peptides naturally processed by the MHC [J].
Giguere, Sebastien ;
Drouin, Alexandre ;
Lacoste, Alexandre ;
Marchand, Mario ;
Corbeil, Jacques ;
Laviolette, Francois .
JOURNAL OF IMMUNOLOGICAL METHODS, 2013, 400 :30-36
[6]   Learning a peptide-protein binding affinity predictor with kernel ridge regression [J].
Giguere, Sebastien ;
Marchand, Mario ;
Laviolette, Francois ;
Drouin, Alexandre ;
Corbeil, Jacques .
BMC BIOINFORMATICS, 2013, 14
[7]   Training products of experts by minimizing contrastive divergence [J].
Hinton, GE .
NEURAL COMPUTATION, 2002, 14 (08) :1771-1800
[8]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[9]   Learning to represent visual input [J].
Hinton, Geoffrey E. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2010, 365 (1537) :177-184
[10]   NetMHCpan, a method for MHC class I binding prediction beyond humans [J].
Hoof, Ilka ;
Peters, Bjoern ;
Sidney, John ;
Pedersen, Lasse Eggers ;
Sette, Alessandro ;
Lund, Ole ;
Buus, Soren ;
Nielsen, Morten .
IMMUNOGENETICS, 2009, 61 (01) :1-13