Implementing Electronic Health Care Predictive Analytics: Considerations And Challenges

被引:119
作者
Amarasingham, Ruben [1 ,2 ,3 ]
Patzer, Rachel E. [4 ,5 ]
Huesch, Marco [6 ]
Nguyen, Nam Q. [1 ]
Xie, Bin [1 ]
机构
[1] PCCI, Dallas, TX 75231 USA
[2] Univ Texas SW Med Ctr Dallas, Dept Internal Med, Dallas, TX 75390 USA
[3] Univ Texas SW Med Ctr Dallas, Dept Clin Sci, Dallas, TX 75390 USA
[4] Emory Univ, Sch Med, Dept Surg, Atlanta, GA 30322 USA
[5] Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA
[6] Univ So Calif, Sol Price Sch Publ Policy, Leonard D Schaeffer Ctr Hlth Policy & Econ, Los Angeles, CA USA
关键词
PROGNOSIS RESEARCH; MODELS; IMPACT;
D O I
10.1377/hlthaff.2014.0352
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The use of predictive modeling for real-time clinical decision making is increasingly recognized as a way to achieve the Triple Aim of improving outcomes, enhancing patients' experiences, and reducing health care costs. The development and validation of predictive models for clinical practice is only the initial step in the journey toward mainstream implementation of real-time point-of-care predictions. Integrating electronic health care predictive analytics (e-HPA) into the clinical work flow, testing e-HPA in a patient population, and subsequently disseminating e-HPA across US health care systems on a broad scale require thoughtful planning. Input is needed from policy makers, health care executives, researchers, and practitioners as the field evolves. This article describes some of the considerations and challenges of implementing e-HPA, including the need to ensure patients' privacy, establish a health system monitoring team to oversee implementation, incorporate predictive analytics into medical education, and make sure that electronic systems do not replace or crowd out decision making by physicians and patients.
引用
收藏
页码:1148 / 1154
页数:7
相关论文
共 27 条
[21]   Prognosis Research Strategy (PROGRESS) 2: Prognostic Factor Research [J].
Riley, Richard D. ;
Hayden, Jill A. ;
Steyerberg, Ewout W. ;
Moons, Karel G. M. ;
Abrams, Keith ;
Kyzas, Panayiotis A. ;
Malats, Nuria ;
Briggs, Andrew ;
Schroter, Sara ;
Altman, Douglas G. ;
Hemingway, Harry .
PLOS MEDICINE, 2013, 10 (02)
[22]   Prognosis and prognostic research: Developing a prognostic model [J].
Royston, Patrick ;
Moons, Karel G. M. ;
Altman, Douglas G. ;
Vergouwe, Yvonne .
BMJ-BRITISH MEDICAL JOURNAL, 2009, 338 :1373-1377
[23]  
Steyerberg EW, 2009, CLIN PREDICTION MODE, P2
[24]   Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research [J].
Steyerberg, Ewout W. ;
Moons, Karel G. M. ;
van der Windt, Danielle A. ;
Hayden, Jill A. ;
Perel, Pablo ;
Schroter, Sara ;
Riley, Richard D. ;
Hemingway, Harry ;
Altman, Douglas G. .
PLOS MEDICINE, 2013, 10 (02)
[25]  
Walker Jan, 2005, Health Aff (Millwood), VSuppl Web Exclusives, pW5
[26]   A risk score for predicting stroke or death in individuals with new-onset atrial fibrillation in the community - The Framingham Heart Study [J].
Wang, TJ ;
Massaro, JM ;
Levy, D ;
Vasan, RS ;
Wolf, PA ;
D'Agostino, RB ;
Larson, MG ;
Kannel, WB ;
Benjamin, EJ .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2003, 290 (08) :1049-1056
[27]   Prediction of coronary heart disease using risk factor categories [J].
Wilson, PWF ;
D'Agostino, RB ;
Levy, D ;
Belanger, AM ;
Silbershatz, H ;
Kannel, WB .
CIRCULATION, 1998, 97 (18) :1837-1847