Links between annual, Milankovitch and continuum temperature variability

被引:246
作者
Huybers, P [1 ]
Curry, W [1 ]
机构
[1] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
基金
美国国家科学基金会; 美国海洋和大气管理局;
关键词
D O I
10.1038/nature04745
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Climate variability exists at all timescales - and climatic processes are intimately coupled, so that understanding variability at any one timescale requires some understanding of the whole. Records of the Earth's surface temperature illustrate this interdependence, having a continuum of variability following a power-law scaling(1-7). But although specific modes of interannual variability are relatively well understood(8,9), the general controls on continuum variability are uncertain and usually described as purely stochastic processes(10-13). Here we show that power-law relationships of surface temperature variability scale with annual and Milankovitch-period ( 23,000- and 41,000- year) cycles. The annual cycle corresponds to scaling at monthly to decadal periods, while millennial and longer periods are tied to the Milankovitch cycles. Thus the annual, Milankovitch and continuum temperature variability together represent the response to deterministic insolation forcing. The identification of a deterministic control on the continuum provides insight into the mechanisms governing interannual and longer-period climate variability.
引用
收藏
页码:329 / 332
页数:4
相关论文
共 32 条
[1]  
[Anonymous], 1993, SPECTRAL ANAL PHYS A, DOI [10.1017/cbo9780511622762, DOI 10.1017/CBO9780511622762, 10.1017/CBO9780511622762]
[2]   Nonlinearity and multifractality of climate change in the past 420,000 years [J].
Ashkenazy, Y ;
Baker, DR ;
Gildor, H ;
Havlin, S .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (22) :CLM2-1
[3]   Long time memory in global warming simulations [J].
Blender, R ;
Fraedrich, K .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (14) :CLM7-1
[4]   Low-frequency temperature variations from a northern tree ring density network [J].
Briffa, KR ;
Osborn, TJ ;
Schweingruber, FH ;
Harris, IC ;
Jones, PD ;
Shiyatov, SG ;
Vaganov, EA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D3) :2929-2941
[5]   Review of simulations of climate variability and change with the GFDL R30 coupled climate model [J].
Delworth, TL ;
Stouffer, RJ ;
Dixon, KW ;
Spelman, MJ ;
Knutson, TR ;
Broccoli, AJ ;
Kushner, PJ ;
Wetherald, RT .
CLIMATE DYNAMICS, 2002, 19 (07) :555-574
[6]  
DeWitt DG, 1999, MON WEATHER REV, V127, P381, DOI 10.1175/1520-0493(1999)127<0381:TPDTAC>2.0.CO
[7]  
2
[8]   Contrasting atmospheric and climate dynamics of the last-glacial and Holocene periods [J].
Ditlevsen, PD ;
Svensmark, H ;
Johnsen, S .
NATURE, 1996, 379 (6568) :810-812
[9]   STATISTICS OF BICOHERENCE AND BIPHASE [J].
ELGAR, S ;
SEBERT, G .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1989, 94 (C8) :10993-10998
[10]  
Fraedrich K, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.037301