Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography

被引:130
作者
Oldenburg, Amy L.
Hansen, Matthew N.
Zweifel, Daniel A.
Wei, Alexander
Boppart, Stephen A.
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
[3] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Bioengn, Urbana, IL 61801 USA
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Internal Med, Urbana, IL 61801 USA
关键词
D O I
10.1364/OE.14.006724
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Plasmon-resonant gold nanorods are demonstrated as low backscattering albedo contrast agents for optical coherence tomography ( OCT). We define the backscattering albedo, a', as the ratio of the backscattering to extinction coefficient. Contrast agents which modify a' within the host tissue phantoms are detected with greater sensitivity by the differential OCT measurement of both a' and extinction. Optimum sensitivity is achieved by maximizing the difference between contrast agents and tissue, vertical bar a'(ca)-a'(tiss)vertical bar. Low backscattering albedo gold nanorods ( 14 x 44 nm;. max = 780 nm) within a high backscattering albedo tissue phantom with an uncertainty in concentration of 20% ( randomized 2 +/- 0.4% intralipid) were readily detected at 82 ppm ( by weight) in a regime where extinction alone could not discriminate nanorods. The estimated threshold of detection was 30 ppm. (c) 2006 Optical Society of America.
引用
收藏
页码:6724 / 6738
页数:15
相关论文
共 49 条
[1]   Use of microbubbles as an optical coherence tomography contrast agent [J].
Barton, JK ;
Hoying, JB ;
Sullivan, CJ .
ACADEMIC RADIOLOGY, 2002, 9 :S52-S55
[2]  
Bohren C. F., 1983, ABSORPTION SCATTERIN, P141
[3]   Optical probes and techniques for molecular contrast enhancement in coherence imaging [J].
Boppart, SA ;
Oldenburg, AL ;
Xu, CY ;
Marks, DL .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (04)
[4]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[5]   Gold nanocages as contrast agents for spectroscopic optical coherence tomography [J].
Cang, H ;
Sun, T ;
Li, ZY ;
Chen, JY ;
Wiley, BJ ;
Xia, YN ;
Li, XD .
OPTICS LETTERS, 2005, 30 (22) :3048-3050
[6]   Gold nanocages: Engineering their structure for biomedical applications [J].
Chen, JY ;
Wiley, B ;
Li, ZY ;
Campbell, D ;
Saeki, F ;
Cang, H ;
Au, L ;
Lee, J ;
Li, XD ;
Xia, YN .
ADVANCED MATERIALS, 2005, 17 (18) :2255-2261
[7]   Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels [J].
Chen, K ;
Liu, Y ;
Ameer, G ;
Backman, V .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (02)
[8]   A REVIEW OF THE OPTICAL-PROPERTIES OF BIOLOGICAL TISSUES [J].
CHEONG, WF ;
PRAHL, SA ;
WELCH, AJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (12) :2166-2185
[9]   Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors [J].
Chou, CH ;
Chen, CD ;
Wang, CRC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (22) :11135-11138
[10]   Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J].
Connor, EE ;
Mwamuka, J ;
Gole, A ;
Murphy, CJ ;
Wyatt, MD .
SMALL, 2005, 1 (03) :325-327