Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA

被引:218
作者
Gilboa, R
Zharkov, DO
Golan, G
Fernandes, AS
Gerchman, SE
Matz, E
Kycia, JH
Grollman, AP [1 ]
Shoham, G
机构
[1] SUNY Stony Brook, Dept Pharmacol Sci, Biol Chem Lab, Stony Brook, NY 11794 USA
[2] Hebrew Univ Jerusalem, Dept Inorgan Chem, IL-91904 Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Lab Struct Chem & Biol, IL-91904 Jerusalem, Israel
[4] Russian Acad Sci, Siberian Div, Novosibirsk Inst Bioorgan Chem, Novosibirsk 630090, Russia
[5] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA
关键词
D O I
10.1074/jbc.M202058200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. The Schiff base intermediate formed during this reaction between Escherichia coli Fpg and DNA was trapped by reduction with sodium borohydride, and the structure of the resulting covalently cross-linked complex was determined at a 2.1-Angstrom resolution. Fpg is a bilobal protein with a wide, positively charged DNA-binding groove. It possesses a conserved zinc finger and a helix-two turn-helix motif that participate in DNA binding. The absolutely conserved residues Lys-56, His-70, Asn-168, and Arg-258 form hydrogen bonds to the phosphodiester backbone of DNA, which is sharply kinked at the lesion site. Residues Met-73, Arg-109, and Phe-110 are inserted into the DNA helix, filling the void created by nucleotide eversion. A deep hydrophobic pocket in the active site is positioned to accommodate an everted base. Structural analysis of the Fpg-DNA complex reveals essential features of damage recognition and the catalytic mechanism of Fpg.
引用
收藏
页码:19811 / 19816
页数:6
相关论文
共 62 条
[51]  
TCHOU J, 1993, J BIOL CHEM, V268, P26738
[52]   NOVEL DNA-BINDING MOTIFS IN THE DNA-REPAIR ENZYME ENDONUCLEASE-III CRYSTAL-STRUCTURE [J].
THAYER, MM ;
AHERN, H ;
XING, DX ;
CUNNINGHAM, RP ;
TAINER, JA .
EMBO JOURNAL, 1995, 14 (16) :4108-4120
[53]   REPLACE, A SUITE OF COMPUTER-PROGRAMS FOR MOLECULAR-REPLACEMENT CALCULATIONS [J].
TONG, L .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1993, 26 :748-751
[54]   THE LOCKED ROTATION FUNCTION [J].
TONG, L ;
ROSSMANN, MG .
ACTA CRYSTALLOGRAPHICA SECTION A, 1990, 46 :783-792
[55]   A structural snapshot of base-pair opening in DNA [J].
van Aalten, DMF ;
Erlanson, DA ;
Verdine, GL ;
Joshua-Tor, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (21) :11809-11814
[56]  
von Sonntag C., 1987, CHEM BASIS RAD BIOL
[57]   A NEW FORCE-FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC-ACIDS AND PROTEINS [J].
WEINER, SJ ;
KOLLMAN, PA ;
CASE, DA ;
SINGH, UC ;
GHIO, C ;
ALAGONA, G ;
PROFETA, S ;
WEINER, P .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1984, 106 (03) :765-784
[58]   Stressing-out DNA? The contribution of serine-phosphodiester interactions in catalysis by uracil DNA glycosylase [J].
Werner, RM ;
Jiang, YL ;
Gordley, RG ;
Jagadeesh, GJ ;
Ladner, JE ;
Xiao, GY ;
Tordova, M ;
Gilliland, GL ;
Stivers, JT .
BIOCHEMISTRY, 2000, 39 (41) :12585-12594
[59]   Substrate specificity and reaction mechanism of murine 8-oxoguanine-DNA glycosylase [J].
Zharkov, DO ;
Rosenquist, TA ;
Gerchman, SE ;
Grollman, AP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :28607-28617
[60]   NH2-terminal proline acts as a nucleophile in the glycosylase/AP-lyase reaction catalyzed by Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) protein [J].
Zharkov, DO ;
Rieger, RA ;
Iden, CR ;
Grollman, AP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (08) :5335-5341