Impact of Metallophilicity on "Colossal" Positive and Negative Thermal Expansion in a Series of Isostructural Dicyanometallate Coordination Polymers

被引:99
作者
Korcok, Jasmine L. [1 ]
Katz, Michael J. [1 ]
Leznoff, Daniel B. [1 ]
机构
[1] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
X-RAY; CRYSTAL-STRUCTURE; INFRARED-SPECTRA; SINGLE-CRYSTAL; TEMPERATURE; GOLD; LUMINESCENCE; FRAMEWORK; PHASE; POLYMORPHS;
D O I
10.1021/ja809631r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Five isostructural dicyanometallate coordination polymers containing metallophilic interactions (In[M(CN)(2)](3) (M = Ag, Au), KCd[M(CN)(2)](3), and KNi[Au(CN)(2)](3)) were synthesized and investigated by variable-temperature powder X-ray diffraction to probe their thermal expansion properties. The compounds have a trigonal unit cell and show positive thermal expansion (PTE) in the ab plane, where Kagome sheets of M atoms reside, and negative thermal expansion (NTE) along the trigonal c axis, perpendicular to these sheets. The magnitude of thermal expansion is unusually large in all cases (40 x 10(-6) K-1 < vertical bar alpha vertical bar < 110 x 10(-6) K-1). The system with the weakest metallophilic interactions, In[Ag(CN)(2)](3), shows the most "colossal" thermal expansion of the series (alpha(a) = 105(2) x 10(-6) K-1, alpha(c) = -84(2) x 10(-6) K-1 at 295 K), while systems containing stronger Au-Au interactions show relatively reduced thermal expansion. Thus, it appears that strong metallophilic interactions hinder colossal thermal expansion behavior. Additionally, the presence of K+ counterions also reduces the magnitude of thermal expansion.
引用
收藏
页码:4866 / 4871
页数:6
相关论文
共 63 条
[1]   PIEZOELECTRIC KCO[AU(CN)2]3 - ROOM-TEMPERATURE CRYSTAL-STRUCTURE OF A COBALT-HARDENED GOLD ELECTRODEPOSITION PROCESS COMPONENT [J].
ABRAHAMS, SC ;
BERNSTEIN, JL ;
LIMINGA, R ;
EISENMANN, ET .
JOURNAL OF CHEMICAL PHYSICS, 1980, 73 (09) :4585-4590
[2]   New members of the Ru(diimine)(CN)42- family: Structural, electrochemical and photophysical properties [J].
Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, United Kingdom ;
不详 ;
不详 .
Dalton Trans., 2006, 1 (39-50)
[3]   Strong negative thermal expansion in siliceous faujasite [J].
Attfield, MP ;
Sleight, AW .
CHEMICAL COMMUNICATIONS, 1998, (05) :601-602
[4]   Exceptional negative thermal expansion in AlPO4-17 [J].
Attfield, MP ;
Sleight, AW .
CHEMISTRY OF MATERIALS, 1998, 10 (07) :2013-2019
[5]   CRYSTALS version 12: software for guided crystal structure analysis [J].
Betteridge, PW ;
Carruthers, JR ;
Cooper, RI ;
Prout, K ;
Watkin, DJ .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2003, 36 :1487-1487
[6]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[7]   Origin of the colossal positive and negative thermal expansion in Ag3[Co(CN)6]:: an ab initio density functional theory study [J].
Calleja, Mark ;
Goodwin, Andrew L. ;
Dove, Martin T. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (25)
[8]   Compositional dependence of negative thermal expansion in the Prussian blue analogues MIIPtIV(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd) [J].
Chapman, Karena W. ;
Chupas, Peter J. ;
Kepert, Cameron J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (21) :7009-7014
[9]   Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2:: An atomic pair distribution function analysis [J].
Chapman, KW ;
Chupas, PJ ;
Kepert, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (44) :15630-15636
[10]  
COLIS JCF, 2005, J CHEM SOC DALTON, P675