Direct observation of a widely tunable bandgap in bilayer graphene

被引:3048
作者
Zhang, Yuanbo [1 ]
Tang, Tsung-Ta [1 ]
Girit, Caglar [1 ]
Hao, Zhao [2 ,4 ]
Martin, Michael C. [2 ]
Zettl, Alex [1 ,3 ]
Crommie, Michael F. [1 ,3 ]
Shen, Y. Ron [1 ,3 ]
Wang, Feng [1 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA
关键词
BERRYS PHASE;
D O I
10.1038/nature08105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The electronic bandgap is an intrinsic property of semiconductors and insulators that largely determines their transport and optical properties. As such, it has a central role in modern device physics and technology and governs the operation of semiconductor devices such as p-n junctions, transistors, photodiodes and lasers(1). A tunable bandgap would be highly desirable because it would allow great flexibility in design and optimization of such devices, in particular if it could be tuned by applying a variable external electric field. However, in conventional materials, the bandgap is fixed by their crystalline structure, preventing such bandgap control. Here we demonstrate the realization of a widely tunable electronic bandgap in electrically gated bilayer graphene. Using a dual-gate bilayer graphene field-effect transistor (FET)(2) and infrared microspectroscopy(3-5), we demonstrate a gate-controlled, continuously tunable bandgap of up to 250 meV. Our technique avoids uncontrolled chemical doping(6-8) and provides direct evidence of a widely tunable bandgap-spanning a spectral range from zero to mid-infrared-that has eluded previous attempts(2,9). Combined with the remarkable electrical transport properties of such systems, this electrostatic bandgap control suggests novel nanoelectronic and nanophotonic device applications based on graphene.
引用
收藏
页码:820 / 823
页数:4
相关论文
共 26 条
[1]   Optical and magneto-optical far-infrared properties of bilayer graphene [J].
Abergel, D. S. L. ;
Fal'ko, Vladimir I. .
PHYSICAL REVIEW B, 2007, 75 (15)
[2]  
ADAM S, 2007, PHYS REV B, V77, P5436
[3]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[4]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[5]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[6]   Electronic states and Landau levels in graphene stacks [J].
Guinea, F. ;
Castro Neto, A. H. ;
Peres, N. M. R. .
PHYSICAL REVIEW B, 2006, 73 (24)
[7]   Transport measurements across a tunable potential barrier in graphene [J].
Huard, B. ;
Sulpizio, J. A. ;
Stander, N. ;
Todd, K. ;
Yang, B. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[8]   ELECTRON CORRELATION IN SEMICONDUCTORS AND INSULATORS - BAND-GAPS AND QUASI-PARTICLE ENERGIES [J].
HYBERTSEN, MS ;
LOUIE, SG .
PHYSICAL REVIEW B, 1986, 34 (08) :5390-5413
[9]   Chiral tunnelling and the Klein paradox in graphene [J].
Katsnelson, M. I. ;
Novoselov, K. S. ;
Geim, A. K. .
NATURE PHYSICS, 2006, 2 (09) :620-625
[10]  
KUZMENKO AB, 2008, INFRARED SPECTROSCOP