Novel Drosophila two-pore domain K+ channels:: rescue of channel function by heteromeric assembly

被引:10
作者
Doering, Frank
Scholz, Henrike
Kuehnlein, Ronald P.
Karschin, Andreas
Wischmeyer, Erhard
机构
[1] Univ Wurzburg, Inst Physiol, D-97070 Wurzburg, Germany
[2] Univ Wurzburg, Dept Genet & Neurobiol, Theodor Boveri Inst, D-97074 Wurzburg, Germany
[3] Max Planck Inst Biophys Chem, D-37070 Gottingen, Germany
关键词
background current; local anesthetics; olfactory learning; pH sensor; potassium channel genes;
D O I
10.1111/j.1460-9568.2006.05102.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Ten genes with essential structural features of two-pore domain potassium channels were identified in the genome of Drosophila melanogaster. Two Drosophila two-pore domain potassium subunits displayed substantial amino acid similarity to human TWIK-related acid-sensitive K+ (TASK) channels (38-43%), whereas all others were less than 26% similar to any human homolog. The cDNAs of Drosophila TASK (dTASK)-6 and dTASK-7 channels were isolated from adult fruit flies. In Northern blots dTASK transcripts were found predominantly in the head fraction of adult flies and whole-mount brain in situ hybridizations showed strongly overlapping expression patterns of both dTASK isoforms in the antennal lobes. When heterologously expressed in Drosophila Schneider 2 cells, dTASK-6 gave rise to rapidly activating K+-selective currents that steeply depended on external pH. Structural elements in the extracellular M1-P1 loop of dTASK-6 were found to be involved in proton sensation. In contrast to mammalian TASK channels, the pH sensitivity was independent of extracellular histidines adjacent to the GYG selectivity filter (His98). As revealed by mutational analysis, functional expression of dTASK-7 was prevented by two nonconserved amino acids (Ala92-Met93) in the pore domain. When these two residues were replaced by conserved Thr92-Thr93, typical K+-selective leak currents were generated that were insensitive to changes in external pH. Nonfunctional wildtype dTASK-7 channels appeared to form heteromeric assemblies with dTASK-6. Following cotransfection of dTASK-6 and wildtype dTASK-7 (or when engineered as concatemers), K+ currents were observed that were smaller in amplitude, harbored slower activation kinetics and were considerably less inhibited by local anesthetics as compared with dTASK-6. Thus, pore-loop residues in dTASK-7 changed functional and pharmacological properties in heteromeric dTASK channels.
引用
收藏
页码:2264 / 2274
页数:11
相关论文
共 51 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]   TASK-5, a novel member of the tandem pore K+ channel family [J].
Ashmole, I ;
Goodwin, PA ;
Stanfield, PR .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2001, 442 (06) :828-833
[3]  
Bayliss Douglas A, 2003, Mol Interv, V3, P205, DOI 10.1124/mi.3.4.205
[4]   Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits [J].
Berg, AP ;
Talley, EM ;
Manger, JP ;
Bayliss, DA .
JOURNAL OF NEUROSCIENCE, 2004, 24 (30) :6693-6702
[5]   Structure and function of two-pore-domain K+ channels:: contributions from genetic model organisms [J].
Buckingham, SD ;
Kidd, JF ;
Law, RJ ;
Franks, CJ ;
Sattelle, DB .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2005, 26 (07) :361-367
[6]   Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit [J].
Chan, KW ;
Sui, JL ;
Vivaudou, M ;
Logothetis, DE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :14193-14198
[7]   Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits [J].
Czirják, G ;
Enyedi, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (07) :5426-5432
[8]   Olfactory memory formation in Drosophila:: From molecular to systems neuroscience [J].
Davis, RL .
ANNUAL REVIEW OF NEUROSCIENCE, 2005, 28 :275-302
[9]  
de la Cruz IP, 2003, J NEUROSCI, V23, P9133
[10]   Inwardly rectifying K+ (Kir) channels in Drosophila -: A crucial role of cellular milieu factors for Kir channel function [J].
Döring, F ;
Wischmeyer, E ;
Kühnlein, RP ;
Jäckle, H ;
Karschin, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (28) :25554-25561