Hamiltonian decomposition of recursive circulant graphs

被引:14
作者
Biss, DK [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0012-365X(99)00199-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The graph G(N,d) has vertex set V = {0, 1,...,N - 1}, with {upsilon,w} an edge if upsilon - w = +d(i) (mod N) for some 0 less than or equal to i less than or equal to [log(d)N] - 1. We show that the circulant graph G(cd(m),d) is Hamilton decomposable for all positive integers c,d, and m with c < d. This extends work of Micheneau and answers a special case of a question of Alspach. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 5 条
[1]  
ALSPACH B, 1984, DISCRETE MATH, V50, P115
[2]   HAMILTONIAN DECOMPOSITION OF CAYLEY-GRAPHS OF DEGREE-4 [J].
BERMOND, JC ;
FAVARON, O ;
MAHEO, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (02) :142-153
[3]   Hamiltonian cycles and paths in Cayley graphs and digraphs - A survey [J].
Curran, SJ ;
Gallian, JA .
DISCRETE MATHEMATICS, 1996, 156 (1-3) :1-18
[4]   Disjoint Hamiltonian cycles in recursive circulant graphs [J].
Micheneau, C .
INFORMATION PROCESSING LETTERS, 1997, 61 (05) :259-264
[5]  
Park J. H., 1994, P INT S PAR ARCH ALG, P73, DOI DOI 10.1109/ISPAN.1994.367162