Disjoint Hamiltonian cycles in recursive circulant graphs

被引:21
作者
Micheneau, C
机构
[1] LaBRI, URA CNRS 1304, Université Bordeaux I, 351, cours de la Libération, 33405 Talence Cedex, France
关键词
combinatorial problems; Cayley graph; circulant graph; Hamiltonian decomposition;
D O I
10.1016/S0020-0190(97)00020-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show in this paper that the circulant graph G(2(m), 4) is Hamiltonian decomposable, and propose a recursive construction method. This is a partial answer to a problem posed by B. Alspach. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 8 条
[1]  
ALSPACH B, 1984, DISCRETE MATH, V50, P115
[2]   2 EDGE-DISJOINT HAMILTONIAN CYCLES IN THE BUTTERFLY GRAPH [J].
BARTH, D ;
RASPAUD, A .
INFORMATION PROCESSING LETTERS, 1994, 51 (04) :175-179
[3]  
Berge C, 1976, Graphs and Hypergraphs
[4]   HAMILTONIAN DECOMPOSITION OF CAYLEY-GRAPHS OF DEGREE-4 [J].
BERMOND, JC ;
FAVARON, O ;
MAHEO, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (02) :142-153
[5]  
CURRAN SJ, 1994, HAMILTONIAN CYCLES P
[6]  
Leighton F.T., 1992, Introduction to Parallel Algorithms and Architecture: Arrays. Trees. Hypercubes
[7]   HAMILTONIAN DECOMPOSITIONS OF CAYLEY-GRAPHS ON ABELIAN-GROUPS [J].
LIU, JQ .
DISCRETE MATHEMATICS, 1994, 131 (1-3) :163-171
[8]  
Park J. H., 1994, P INT S PAR ARCH ALG, P73, DOI DOI 10.1109/ISPAN.1994.367162