When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?

被引:168
作者
Woeginger, GJ [1 ]
机构
[1] Graz Univ Technol, Inst Math B, A-8010 Graz, Austria
关键词
approximate algorithm; FPTAS; worst-case analysis; dynamic programming;
D O I
10.1287/ijoc.12.1.57.11901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We derive results of the following flavor: If a combinatorial optimization problem can be formulated via a dynamic program of a certain structure and if the involved cost and transition functions satisfy certain arithmetical and structural conditions, then the optimization problem automatically possesses a fully polynomial time approximation scheme (FPTAS). Our characterizations provide a natural and uniform approach to fully polynomial time approximation schemes. We illustrate their strength and generality by deducing from them the existence of FPTASs for a multitude of scheduling problems. Many known approximability results follow as corollaries from our main result.
引用
收藏
页码:57 / 74
页数:18
相关论文
共 41 条
[21]   FAST APPROXIMATION ALGORITHMS FOR KNAPSACK AND SUM OF SUBSET PROBLEMS [J].
IBARRA, OH ;
KIM, CE .
JOURNAL OF THE ACM, 1975, 22 (04) :463-468
[22]   Algorithms for minclique scheduling problems [J].
Jurisch, B ;
Kubiak, W ;
Jozefowska, J .
DISCRETE APPLIED MATHEMATICS, 1997, 72 (1-2) :115-139
[23]  
KARP R. M., 1972, COMPLEXITY COMPUTER, P85, DOI DOI 10.1007/978-1-4684-2001-2_9
[24]   A Fully Polynomial Approximation Scheme for Minimizing Makespan of Deteriorating Jobs [J].
Kovalyov M.Y. ;
Kubiak W. .
Journal of Heuristics, 1998, 3 (4) :287-297
[25]   A FULLY POLYNOMIAL-APPROXIMATION SCHEME FOR SCHEDULING A SINGLE-MACHINE TO MINIMIZE TOTAL WEIGHTED LATE WORK [J].
KOVALYOV, MY ;
POTTS, CN ;
VANWASSENHOVE, LN .
MATHEMATICS OF OPERATIONS RESEARCH, 1994, 19 (01) :86-93
[26]  
KOVALYOV MY, 1998, IN PRESS OPERATIONS
[27]   COMPLETION-TIME VARIANCE MINIMIZATION ON A SINGLE-MACHINE IS DIFFICULT [J].
KUBIAK, W .
OPERATIONS RESEARCH LETTERS, 1993, 14 (01) :49-59
[28]  
KUBIAK W, 1998, IN PRESS NAVAL RES L
[29]  
Lawler E. L., 1982, Operations Research Letters, V1, P207, DOI 10.1016/0167-6377(82)90022-0
[30]  
Lawler E. L., 1979, Mathematics of Operations Research, V4, P339, DOI 10.1287/moor.4.4.339