Electroluminescent and electrical characteristics of polar and nonpolar InGaN/GaN light-emitting diodes at low temperature

被引:7
作者
Masui, Hisashi [1 ]
Schmidt, Mathew C.
Chakraborty, Arpan
Nakamura, Shuji
Denbaars, Steven P.
机构
[1] Univ Calif Santa Barbara, Coll Engn, Dept Mat, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Coll Engn, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, NICP, ERATO, UCSB Grp,Japan Sci & Technol Agcy, Santa Barbara, CA 93106 USA
来源
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS | 2006年 / 45卷 / 10A期
关键词
light-emitting diode (LED); electroluminescence (EL); low temperature (LT) measurement; polarization-induced internal electric field; nonpolar-plane GaN;
D O I
10.1143/JJAP.45.7661
中图分类号
O59 [应用物理学];
学科分类号
摘要
Three types of InGaN multiple quantum-well light-emitting diodes (LEDs) were subjected to electroluminescent and electrical characterization at low temperatures and results were compared. Characterized samples included (0001) c-plane InGaN LEDs, (11 (2) over bar0) a-plane InGaN LEDs, and AlInGaP LEDs. While electroluminescence from the (11 (2) over bar0) InGaN LEDs and AlInGaP LEDs extinguished and became highly electrically resistive at low temperature, the (0001) InGaN LEDs emitted light down to 7 K. This result suggested the continued presence of electrical carriers in the (000 1) InGaN LEDs at low temperatures. A carrier-generation mechanism is proposed by examining the energy band diagram with polarization-induced internal electric fields taken into account. Polarization fields in the (0001) InGaN LEDs give rise to local field emission, hole-trapping potential, and interface states, which assist hole injection. It is believed that (0001) InGaN LED operation was possible at low temperatures because of these effects.
引用
收藏
页码:7661 / 7666
页数:6
相关论文
共 33 条
[1]  
Ashcroft N. W., 1976, SOLID STATE PHYS, P579
[2]  
Cao XA, 2003, MATER RES SOC SYMP P, V764, P349
[3]   Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes [J].
Casey, HC ;
Muth, J ;
Krishnankutty, S ;
Zavada, JM .
APPLIED PHYSICS LETTERS, 1996, 68 (20) :2867-2869
[4]   Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak [J].
Chakraborty, A ;
Haskell, BA ;
Keller, S ;
Speck, JS ;
DenBaars, SP ;
Nakamura, S ;
Mishra, UK .
APPLIED PHYSICS LETTERS, 2004, 85 (22) :5143-5145
[5]   Localized quantum well excitons in InGaN single-quantum-well amber light-emitting diodes [J].
Chichibu, SF ;
Azuhata, T ;
Sota, T ;
Mukai, T ;
Nakamura, S .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (09) :5153-5157
[6]   Low-temperature operation of AlGaN single-quantum-well light-emitting diodes with deep ultraviolet emission at 285 nm [J].
Chitnis, A ;
Pachipulusu, R ;
Mandavilli, V ;
Shatalov, M ;
Kuokstis, E ;
Zhang, JP ;
Adivarahan, V ;
Wu, S ;
Simin, G ;
Khan, MA .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :2938-2940
[7]   Well-width dependence of photoluminescence emission from a-plane GaN/AlGaN multiple quantum wells [J].
Craven, MD ;
Waltereit, P ;
Speck, JS ;
DenBaars, SP .
APPLIED PHYSICS LETTERS, 2004, 84 (04) :496-498
[8]  
ELISEEV PG, 2005, P CLEO, P147
[9]  
Gotz W, 1996, APPL PHYS LETT, V68, P3144, DOI 10.1063/1.115805
[10]   IMPURITY-BAND TAILS IN HIGH-DENSITY LIMIT .I. MINIMUM COUNTING METHODS [J].
HALPERIN, BI ;
LAX, M .
PHYSICAL REVIEW, 1966, 148 (02) :722-+