Linear semi-infinite programming theory:: An updated survey

被引:61
作者
Goberna, MA [1 ]
López, MA [1 ]
机构
[1] Univ Alicante, Dept Stat & Operat Res, Alicante 03071, Spain
关键词
linear and convex semi-infinite programming linear and convex inequality systems; convex sets; stability; well-posedness; parametric optimization; constraint qualifications; global error bound;
D O I
10.1016/S0377-2217(02)00327-2
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents an state-of-the-art survey on linear semi-infinite programming theory and its extensions (in particular. convex semi-infinite programming). This review updates a previous survey [Semi-Infinite Programming, Non-convex Optim. Appl. 25. 1998] of the same authors on the same topic which was published in 1998. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:390 / 405
页数:16
相关论文
共 97 条
  • [1] ABBE L, SEMIINFINITE PROGRAM, P169
  • [2] Altinel IK, 1997, NAV RES LOG, V44, P187, DOI 10.1002/(SICI)1520-6750(199703)44:2<187::AID-NAV3>3.0.CO
  • [3] 2-5
  • [4] Strong duality for inexact linear programming problems
    Amaya, J
    Gómez, JA
    [J]. OPTIMIZATION, 2001, 49 (03) : 243 - 269
  • [5] AN EXTENSION OF THE SIMPLEX ALGORITHM FOR SEMI-INFINITE LINEAR-PROGRAMMING
    ANDERSON, EJ
    LEWIS, AS
    [J]. MATHEMATICAL PROGRAMMING, 1989, 44 (03) : 247 - 269
  • [6] Anderson EJ, 1998, LINEAR ALGEBRA APPL, V270, P231
  • [7] Simplex-like trajectories on quasi-polyhedral sets
    Anderson, EJ
    Goberna, MA
    López, MA
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (01) : 147 - 162
  • [8] Anderson EJ, 1987, LINEAR PROGRAMMING I
  • [9] [Anonymous], 1991, CONVEX ANAL MINIMIZA
  • [10] ASTAFEV NN, 1994, SIB C APPL IND MATH, V1